File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/LMWC.2008.916772
- Scopus: eid_2-s2.0-40549112024
- WOS: WOS:000253917100001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A new conformal FDTD(2,4) scheme for modeling three-dimensional curved perfectly conducting objects
Title | A new conformal FDTD(2,4) scheme for modeling three-dimensional curved perfectly conducting objects |
---|---|
Authors | |
Keywords | Conformal technique Electromagnetic scattering High-order difference Staircasing approach |
Issue Date | 2008 |
Citation | Ieee Microwave And Wireless Components Letters, 2008, v. 18 n. 3, p. 149-151 How to Cite? |
Abstract | A new high-order conformal FDTD(2,4) scheme is proposed to solve the electromagnetic scattering from 3-D curved perfectly conducting objects. For electric field components, the update equations do not need to be modified. For magnetic field components, the inner loop is treated with the locally conformal technique, and the outer loop is unmodified. Numerical results demonstrate that the high-order conformal scheme can obtain better numerical precision under coarse grid condition compared with the low-order conformal method and the high-order staircasing approach, which in turn saves CPU time and memory. © 2008 IEEE. |
Persistent Identifier | http://hdl.handle.net/10722/148885 |
ISSN | 2023 Impact Factor: 2.9 2023 SCImago Journal Rankings: 0.770 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sha, W | en_HK |
dc.contributor.author | Wu, X | en_HK |
dc.contributor.author | Huang, Z | en_HK |
dc.contributor.author | Chen, M | en_HK |
dc.date.accessioned | 2012-06-20T06:16:06Z | - |
dc.date.available | 2012-06-20T06:16:06Z | - |
dc.date.issued | 2008 | en_HK |
dc.identifier.citation | Ieee Microwave And Wireless Components Letters, 2008, v. 18 n. 3, p. 149-151 | en_HK |
dc.identifier.issn | 1531-1309 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/148885 | - |
dc.description.abstract | A new high-order conformal FDTD(2,4) scheme is proposed to solve the electromagnetic scattering from 3-D curved perfectly conducting objects. For electric field components, the update equations do not need to be modified. For magnetic field components, the inner loop is treated with the locally conformal technique, and the outer loop is unmodified. Numerical results demonstrate that the high-order conformal scheme can obtain better numerical precision under coarse grid condition compared with the low-order conformal method and the high-order staircasing approach, which in turn saves CPU time and memory. © 2008 IEEE. | en_HK |
dc.language | eng | en_US |
dc.relation.ispartof | IEEE Microwave and Wireless Components Letters | en_HK |
dc.subject | Conformal technique | en_HK |
dc.subject | Electromagnetic scattering | en_HK |
dc.subject | High-order difference | en_HK |
dc.subject | Staircasing approach | en_HK |
dc.title | A new conformal FDTD(2,4) scheme for modeling three-dimensional curved perfectly conducting objects | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Sha, W:shawei@hku.hk | en_HK |
dc.identifier.authority | Sha, W=rp01605 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1109/LMWC.2008.916772 | en_HK |
dc.identifier.scopus | eid_2-s2.0-40549112024 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-40549112024&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 18 | en_HK |
dc.identifier.issue | 3 | en_HK |
dc.identifier.spage | 149 | en_HK |
dc.identifier.epage | 151 | en_HK |
dc.identifier.isi | WOS:000253917100001 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Sha, W=34267903200 | en_HK |
dc.identifier.scopusauthorid | Wu, X=7407066038 | en_HK |
dc.identifier.scopusauthorid | Huang, Z=12243904200 | en_HK |
dc.identifier.scopusauthorid | Chen, M=24560485600 | en_HK |
dc.identifier.issnl | 1531-1309 | - |