File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s10851-012-0336-0
- Scopus: eid_2-s2.0-84866045322
- WOS: WOS:000307772900015
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A Self-calibration Algorithm Based on a Unified Framework for Constraints on Multiple Views
Title | A Self-calibration Algorithm Based on a Unified Framework for Constraints on Multiple Views |
---|---|
Authors | |
Keywords | Euclidean reconstruction Multiple views Projective reconstruction Self-calibration Structure and motion Uncalibrated images |
Issue Date | 2012 |
Publisher | Springer New York LLC. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0924-9907 |
Citation | Journal Of Mathematical Imaging And Vision, 2012, v. 44 n. 3, p. 432-448 How to Cite? |
Abstract | In this paper, we propose a new self-calibration algorithm for upgrading projective space to Euclidean space. The proposed method aims to combine the most commonly used metric constraints, including zero skew and unit aspect-ratio by formulating each constraint as a cost function within a unified framework. Additional constraints, e.g., constant principal points, can also be formulated in the same framework. The cost function is very flexible and can be composed of different constraints on different views. The upgrade process is then stated as a minimization problem which may be solved by minimizing an upper bound of the cost function. This proposed method is non-iterative. Experimental results on synthetic data and real data are presented to show the performance of the proposed method and accuracy of the reconstructed scene. © 2012 The Author(s). |
Persistent Identifier | http://hdl.handle.net/10722/147102 |
ISSN | 2023 Impact Factor: 1.3 2023 SCImago Journal Rankings: 0.684 |
ISI Accession Number ID | |
References | Chen, G.Q., Medioni, G.G.: Practical algorithms for stratified structure-from-motion. Image Vis. Comput. 20, 103–123 (2002) doi: 10.1016/S0262-8856(01)00090-7 Fusiello, A.: A new autocalibration algorithm: experimental evaluation. In: Skarbek, W. (ed.) Computer Analysis of Images and Patterns. LNCS, vol. 2124, pp. 717–724. Springer, Berlin (2001) doi: 10.1007/3-540-44692-3_86 Gurdjos, P., Bartoli, A., Sturm, P.: Is dual linear self-calibration artificially ambiguous? In: IEEE Int. Conf. Computer Vision, Kyoto, Japan, pp. 88–95 (2009) doi: 10.1109/ICCV.2009.5459152 Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518 doi: 10.1017/CBO9780511811685 Hung, Y.S., Tang, W.K.: Projective reconstruction from multiple views with minimization of 2D reprojection error. Int. J. Comput. Vis. 66(3), 305–317 (2006) doi: 10.1007/s11263-005-3675-0 Maybank, S.J., Faugeras, O.D.: A theory of self-calibration of a moving camera. Int. J. Comput. Vis. 8(2), 123–151 (1992) doi: 10.1007/BF00127171 Pollefeys, M., Gool, L.V.: Stratified self-calibration with the modulus constraint. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 707–724 (1999) doi: 10.1109/34.784285 Sainz, M., Bagherzadeh, N., Susin, A.: Recovering 3d metric structure and motion from multiple uncalibrated cameras. In: Int. Conference on Information Technology: Coding and Computing, pp. 268–273 (2002) doi: 10.1109/ITCC.2002.1000399 Seo, Y., Heyden, A.: Auto-calibration by linear iteration using the dac equation. Image Vis. Comput. 22, 919–926 (2004) doi: 10.1016/j.imavis.2004.05.004 Tang, W.K., Hung, Y.S.: A column-space approach to projective reconstruction. Comput. Vis. Image Underst. 101(3), 166–176 (2006) doi: 10.1016/j.cviu.2005.07.007 Tang, W.K., Hung, Y.S.: A subspace method for projective reconstruction from multiple images with missing data. Image Vis. Comput. 54(5), 515–524 (2006) doi: 10.1016/j.imavis.2006.02.003 Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vis. 9(2), 137–154 (1992) doi: 10.1007/BF00129684 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tang, AWK | en_HK |
dc.contributor.author | Hung, YS | en_HK |
dc.date.accessioned | 2012-05-25T07:50:48Z | - |
dc.date.available | 2012-05-25T07:50:48Z | - |
dc.date.issued | 2012 | en_HK |
dc.identifier.citation | Journal Of Mathematical Imaging And Vision, 2012, v. 44 n. 3, p. 432-448 | en_HK |
dc.identifier.issn | 0924-9907 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/147102 | - |
dc.description.abstract | In this paper, we propose a new self-calibration algorithm for upgrading projective space to Euclidean space. The proposed method aims to combine the most commonly used metric constraints, including zero skew and unit aspect-ratio by formulating each constraint as a cost function within a unified framework. Additional constraints, e.g., constant principal points, can also be formulated in the same framework. The cost function is very flexible and can be composed of different constraints on different views. The upgrade process is then stated as a minimization problem which may be solved by minimizing an upper bound of the cost function. This proposed method is non-iterative. Experimental results on synthetic data and real data are presented to show the performance of the proposed method and accuracy of the reconstructed scene. © 2012 The Author(s). | en_HK |
dc.language | eng | en_US |
dc.publisher | Springer New York LLC. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0924-9907 | en_HK |
dc.relation.ispartof | Journal of Mathematical Imaging and Vision | en_HK |
dc.rights | The Author(s) | en_US |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | en_US |
dc.subject | Euclidean reconstruction | en_HK |
dc.subject | Multiple views | en_HK |
dc.subject | Projective reconstruction | en_HK |
dc.subject | Self-calibration | en_HK |
dc.subject | Structure and motion | en_HK |
dc.subject | Uncalibrated images | en_HK |
dc.title | A Self-calibration Algorithm Based on a Unified Framework for Constraints on Multiple Views | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://www.springerlink.com/link-out/?id=2104&code=KJ322H7256M77158&MUD=MP | en_US |
dc.identifier.email | Hung, YS:yshung@eee.hku.hk | en_HK |
dc.identifier.authority | Hung, YS=rp00220 | en_HK |
dc.description.nature | published_or_final_version | en_US |
dc.identifier.doi | 10.1007/s10851-012-0336-0 | en_HK |
dc.identifier.scopus | eid_2-s2.0-84866045322 | en_HK |
dc.identifier.hkuros | 205889 | - |
dc.relation.references | Chen, G.Q., Medioni, G.G.: Practical algorithms for stratified structure-from-motion. Image Vis. Comput. 20, 103–123 (2002) | en_US |
dc.relation.references | doi: 10.1016/S0262-8856(01)00090-7 | en_US |
dc.relation.references | Faugeras, O.D., Luong, Q.-T., Maybank, S.J.: Camera self-calibration: theory and experiments. In: European Conf. on Computer Vision, SantaMargerita, Italy, pp. 321–334 (1992). citeseer.nj.nec.com/faugeras92camera.html | en_US |
dc.relation.references | Fusiello, A.: A new autocalibration algorithm: experimental evaluation. In: Skarbek, W. (ed.) Computer Analysis of Images and Patterns. LNCS, vol. 2124, pp. 717–724. Springer, Berlin (2001) | en_US |
dc.relation.references | doi: 10.1007/3-540-44692-3_86 | en_US |
dc.relation.references | Gantmacher, F.R.: The Theory of Matrices, vol. I. Chelsea, London (1959) | en_US |
dc.relation.references | Gurdjos, P., Bartoli, A., Sturm, P.: Is dual linear self-calibration artificially ambiguous? In: IEEE Int. Conf. Computer Vision, Kyoto, Japan, pp. 88–95 (2009) | en_US |
dc.relation.references | doi: 10.1109/ICCV.2009.5459152 | en_US |
dc.relation.references | Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518 | en_US |
dc.relation.references | doi: 10.1017/CBO9780511811685 | en_US |
dc.relation.references | Heyden, A.: Reconstruction from image sequences by means of relative depths. In: IEEE Int. Conf. Computer Vision, pp. 1058–1063 (1995). | en_US |
dc.relation.references | Hung, Y.S., Tang, W.K.: Projective reconstruction from multiple views with minimization of 2D reprojection error. Int. J. Comput. Vis. 66(3), 305–317 (2006) | en_US |
dc.relation.references | doi: 10.1007/s11263-005-3675-0 | en_US |
dc.relation.references | Maybank, S.J., Faugeras, O.D.: A theory of self-calibration of a moving camera. Int. J. Comput. Vis. 8(2), 123–151 (1992) | en_US |
dc.relation.references | doi: 10.1007/BF00127171 | en_US |
dc.relation.references | Pollefeys, M., Gool, L.V.: Stratified self-calibration with the modulus constraint. IEEE Trans. Pattern Anal. Mach. Intell. 21(8), 707–724 (1999) | en_US |
dc.relation.references | doi: 10.1109/34.784285 | en_US |
dc.relation.references | Pollefeys, M., Koch, R., Gool, L.V.: Self-calibration and metric reconstruction inspite of varying and unknown intrinsic camera parameters. Int. J. Comput. Vis. 32(1), 7–25 (1999). | en_US |
dc.relation.references | Ponce, J.: On computing metric upgrades of projective reconstructions under the rectangular pixel assumption. In: Proc. of the SMILE 2000 Workshop on 3D Structure from Multiple Images of Large-Scale Environments. LNCS, vol. 2018, pp. 52–67 (2000). http://www.springerlink.com/content/kut09cu6qtykf3aq/ | en_US |
dc.relation.references | Sainz, M., Bagherzadeh, N., Susin, A.: Recovering 3d metric structure and motion from multiple uncalibrated cameras. In: Int. Conference on Information Technology: Coding and Computing, pp. 268–273 (2002) | en_US |
dc.relation.references | doi: 10.1109/ITCC.2002.1000399 | en_US |
dc.relation.references | Schaffalitzky, F.: Direct solution of modulus constraints. In: Proc. Indian Conf. on Computer Vision, Graphics and Image Processing, pp. 314–321 (2000). http://www.robots.ox.ac.uk/~vgg/vggpapers/Schaffalitzky2000b.ps.gz | en_US |
dc.relation.references | Seo, Y., Heyden, A.: Auto-calibration by linear iteration using the dac equation. Image Vis. Comput. 22, 919–926 (2004) | en_US |
dc.relation.references | doi: 10.1016/j.imavis.2004.05.004 | en_US |
dc.relation.references | Sturm, P.: A case against Kruppa’s equations for camera self-calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1199–1204 (2000). | en_US |
dc.relation.references | Tang, W.K., Hung, Y.S.: A column-space approach to projective reconstruction. Comput. Vis. Image Underst. 101(3), 166–176 (2006) | en_US |
dc.relation.references | doi: 10.1016/j.cviu.2005.07.007 | en_US |
dc.relation.references | Tang, W.K., Hung, Y.S.: A subspace method for projective reconstruction from multiple images with missing data. Image Vis. Comput. 54(5), 515–524 (2006) | en_US |
dc.relation.references | doi: 10.1016/j.imavis.2006.02.003 | en_US |
dc.relation.references | Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vis. 9(2), 137–154 (1992) | en_US |
dc.relation.references | doi: 10.1007/BF00129684 | en_US |
dc.relation.references | Bougnoux, S.: From projective to Euclidean space under any practical situation, a criticism of self-calibration. In: IEEE Int. Conf. Computer Vision, pp. 790–796 (1998) | en_US |
dc.relation.references | Faugeras, O.D.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993) | en_US |
dc.relation.references | Han, M., Kanade, T.: Scene reconstruction from multiple uncalibrated views. Tech. Rep. CMU-RI-TR-00-09, Robotics Institute, Carnegie Mellon University (2000) | en_US |
dc.relation.references | Hartley, R.I.: Euclidean reconstruction from uncalibrated views. In: European Conf. on Computer Vision, pp. 579–587 (1994) | en_US |
dc.relation.references | Heyden, A., Åström, K.: Euclidean reconstruction from image sequences with varying and unknown focal length and principal point. In: IEEE Int. Conf. on Computer Vision & Pattern Recognition, San Juan, Puerto Rico, pp. 438–443 (1997) | en_US |
dc.relation.references | Mendonça, P., Cipolla, R.: A simple technique for self-calibration. In: IEEE Int. Conf. on Computer Vision & Pattern Recognition, vol. I, pp. 500–505 (1999) | en_US |
dc.relation.references | Pollefeys, M.: Self-calibration and metric 3d reconstruction from uncalibrated image sequences. Ph.D. thesis, ESAT-PSI, KU Leuven (1999) | en_US |
dc.relation.references | Pollefeys, M., Koch, R., Van Gool, L.: Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. In: IEEE Int. Conf. Computer Vision, pp. 90–95 (1998) | en_US |
dc.relation.references | Seo, Y., Heyden, A.: Auto-calibration from the orthogonality constraints. In: IEEE Int. Conf. Pattern Recognition, Barcelona, Spain, pp. 67–71 (2000) | en_US |
dc.relation.references | Seo, Y., Hong, K.-S.: A linear metric reconstruction by complex eigen-decomposition. IEICE Trans. Inf. Syst. E84-D(12), 1626–1632 (2001) | en_US |
dc.relation.references | Sturm, P.: Critical motion sequences for monocular self-calibration and uncalibrated Euclidean reconstruction. In: IEEE Int. Conf. on Computer Vision & Pattern Recognition, Puerto Rico, pp. 1100–1105 (1997) | en_US |
dc.relation.references | Triggs, B.: Autocalibration and the absolute quadric. In: IEEE Int. Conf. on Computer Vision & Pattern Recognition, pp. 609–614 (1997) | en_US |
dc.relation.references | Zeller, C., Faugeras, O.: Camera self-calibration from video sequences: the Kruppa equations revisited. Tech. Rep. 2793, INRIA (1996) | en_US |
dc.identifier.spage | 1 | en_HK |
dc.identifier.epage | 17 | en_HK |
dc.identifier.eissn | 1573-7683 | en_US |
dc.identifier.isi | WOS:000307772900015 | - |
dc.publisher.place | United States | en_HK |
dc.description.other | Springer Open Choice, 25 May 2012 | en_US |
dc.identifier.scopusauthorid | Tang, AWK=55213419700 | en_HK |
dc.identifier.scopusauthorid | Hung, YS=8091656200 | en_HK |
dc.identifier.citeulike | 10694804 | - |
dc.identifier.issnl | 0924-9907 | - |