File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Light harvesting improvement of organic solar cells with self-enhanced active layer designs
  • Basic View
  • Metadata View
  • XML View
TitleLight harvesting improvement of organic solar cells with self-enhanced active layer designs
 
AuthorsChen, L1
Sha, WEI1
Choy, WCH1
 
KeywordsAbsorption enhancement
Active Layer
Efficient scattering matrix method
Electrical performance
Gradient type
 
Issue Date2012
 
PublisherOptical Society of America. The Journal's web site is located at http://www.opticsexpress.org
 
CitationOptics Express, 2012, v. 20 n. 7, p. 8175-8185 [How to Cite?]
DOI: http://dx.doi.org/10.1364/OE.20.008175
 
AbstractWe present designs of organic solar cells (OSCs) incorporating periodically arranged gradient type active layer. The designs can enhance light harvesting with patterned organic materials themselves (i.e. selfenhanced active layer design) to avoid degrading electrical performances of OSCs in contrast to introducing inorganic concentrators into OSC active layers such as silicon and metallic nanostructures. Geometry of the OSC is fully optimized by rigorously solving Maxwell's equations with fast and efficient scattering matrix method. Optical absorption is accessed by a volume integral of the active layer excluding the metallic absorption. Our numerical results show that the OSC with a self-enhanced active layer, compared with the conventional planar active layer configuration, has broadband and wide-angle range absorption enhancement due to better geometric impedance matching and prolonged optical path. This work provides a theoretical foundation and engineering reference for high performance OSC designs. © 2012 Optical Society of America.
 
ISSN1094-4087
2012 Impact Factor: 3.546
2012 SCImago Journal Rankings: 2.260
 
DOIhttp://dx.doi.org/10.1364/OE.20.008175
 
ISI Accession Number IDWOS:000302138800126
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorChen, L
 
dc.contributor.authorSha, WEI
 
dc.contributor.authorChoy, WCH
 
dc.date.accessioned2012-05-23T05:43:16Z
 
dc.date.available2012-05-23T05:43:16Z
 
dc.date.issued2012
 
dc.description.abstractWe present designs of organic solar cells (OSCs) incorporating periodically arranged gradient type active layer. The designs can enhance light harvesting with patterned organic materials themselves (i.e. selfenhanced active layer design) to avoid degrading electrical performances of OSCs in contrast to introducing inorganic concentrators into OSC active layers such as silicon and metallic nanostructures. Geometry of the OSC is fully optimized by rigorously solving Maxwell's equations with fast and efficient scattering matrix method. Optical absorption is accessed by a volume integral of the active layer excluding the metallic absorption. Our numerical results show that the OSC with a self-enhanced active layer, compared with the conventional planar active layer configuration, has broadband and wide-angle range absorption enhancement due to better geometric impedance matching and prolonged optical path. This work provides a theoretical foundation and engineering reference for high performance OSC designs. © 2012 Optical Society of America.
 
dc.description.naturepublished_or_final_version
 
dc.identifier.citationOptics Express, 2012, v. 20 n. 7, p. 8175-8185 [How to Cite?]
DOI: http://dx.doi.org/10.1364/OE.20.008175
 
dc.identifier.doihttp://dx.doi.org/10.1364/OE.20.008175
 
dc.identifier.epage8185
 
dc.identifier.hkuros199649
 
dc.identifier.hkuros221845
 
dc.identifier.hkuros221846
 
dc.identifier.isiWOS:000302138800126
 
dc.identifier.issn1094-4087
2012 Impact Factor: 3.546
2012 SCImago Journal Rankings: 2.260
 
dc.identifier.issue7
 
dc.identifier.pmid22453487
 
dc.identifier.scopuseid_2-s2.0-84859417873
 
dc.identifier.spage8175
 
dc.identifier.urihttp://hdl.handle.net/10722/146864
 
dc.identifier.volume20
 
dc.languageeng
 
dc.publisherOptical Society of America. The Journal's web site is located at http://www.opticsexpress.org
 
dc.publisher.placeUnited States
 
dc.relation.ispartofOptics Express
 
dc.relation.referencesReferences in Scopus
 
dc.rightsOptics Express. Copyright © Optical Society of America.
 
dc.rightsThis paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-7-8175. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.
 
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License
 
dc.subjectAbsorption enhancement
 
dc.subjectActive Layer
 
dc.subjectEfficient scattering matrix method
 
dc.subjectElectrical performance
 
dc.subjectGradient type
 
dc.titleLight harvesting improvement of organic solar cells with self-enhanced active layer designs
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Chen, L</contributor.author>
<contributor.author>Sha, WEI</contributor.author>
<contributor.author>Choy, WCH</contributor.author>
<date.accessioned>2012-05-23T05:43:16Z</date.accessioned>
<date.available>2012-05-23T05:43:16Z</date.available>
<date.issued>2012</date.issued>
<identifier.citation>Optics Express, 2012, v. 20 n. 7, p. 8175-8185</identifier.citation>
<identifier.issn>1094-4087</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/146864</identifier.uri>
<description.abstract>We present designs of organic solar cells (OSCs) incorporating periodically arranged gradient type active layer. The designs can enhance light harvesting with patterned organic materials themselves (i.e. selfenhanced active layer design) to avoid degrading electrical performances of OSCs in contrast to introducing inorganic concentrators into OSC active layers such as silicon and metallic nanostructures. Geometry of the OSC is fully optimized by rigorously solving Maxwell&apos;s equations with fast and efficient scattering matrix method. Optical absorption is accessed by a volume integral of the active layer excluding the metallic absorption. Our numerical results show that the OSC with a self-enhanced active layer, compared with the conventional planar active layer configuration, has broadband and wide-angle range absorption enhancement due to better geometric impedance matching and prolonged optical path. This work provides a theoretical foundation and engineering reference for high performance OSC designs. &#169; 2012 Optical Society of America.</description.abstract>
<language>eng</language>
<publisher>Optical Society of America. The Journal&apos;s web site is located at http://www.opticsexpress.org</publisher>
<relation.ispartof>Optics Express</relation.ispartof>
<rights>Optics Express. Copyright &#169; Optical Society of America.</rights>
<rights>This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-7-8175. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.</rights>
<rights>Creative Commons: Attribution 3.0 Hong Kong License</rights>
<subject>Absorption enhancement</subject>
<subject>Active Layer</subject>
<subject>Efficient scattering matrix method</subject>
<subject>Electrical performance</subject>
<subject>Gradient type</subject>
<title>Light harvesting improvement of organic solar cells with self-enhanced active layer designs</title>
<type>Article</type>
<description.nature>published_or_final_version</description.nature>
<identifier.doi>10.1364/OE.20.008175</identifier.doi>
<identifier.pmid>22453487</identifier.pmid>
<identifier.scopus>eid_2-s2.0-84859417873</identifier.scopus>
<identifier.hkuros>199649</identifier.hkuros>
<identifier.hkuros>221845</identifier.hkuros>
<identifier.hkuros>221846</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-84859417873&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>20</identifier.volume>
<identifier.issue>7</identifier.issue>
<identifier.spage>8175</identifier.spage>
<identifier.epage>8185</identifier.epage>
<identifier.isi>WOS:000302138800126</identifier.isi>
<publisher.place>United States</publisher.place>
<bitstream.url>http://hub.hku.hk/bitstream/10722/146864/1/Content.pdf</bitstream.url>
</item>
Author Affiliations
  1. The University of Hong Kong