File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.joen.2011.12.024
- Scopus: eid_2-s2.0-84862797487
- PMID: 22414829
- WOS: WOS:000302926200008
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Coculture of dental pulp stem cells with endothelial cells enhances osteo-/odontogenic and angiogenic potential in vitro
Title | Coculture of dental pulp stem cells with endothelial cells enhances osteo-/odontogenic and angiogenic potential in vitro | ||||
---|---|---|---|---|---|
Authors | |||||
Keywords | Dental pulp stem cells endothelial cells regenerative endodontics synergism | ||||
Issue Date | 2012 | ||||
Publisher | Elsevier Inc. The Journal's web site is located at http://www.jendodon.com | ||||
Citation | Journal Of Endodontics, 2012, v. 38 n. 4, p. 454-463 How to Cite? | ||||
Abstract | Introduction: Dental pulp stem cells (DPSCs) have received much attention as a promising population of stem cells in regenerative endodontics. Securing a good blood supply during regeneration is a challenging task because of the constricted apical canal opening, which allows only a limited blood supply. The aim of this study was to investigate any potential synergistic effects of dental pulp stem cells and endothelial cells (ECs) on osteo-/odontogenic and angiogenic differentiation in vitro. Methods: Different ratios of DPSCs and ECs were cultured in direct contact using optimized medium for coculture. The 70% confluent cocultures were incubated in the osteo-/odontogenic differentiation medium for up to 3 weeks. Alkaline phosphatase (ALP) activity, the expression levels of ALP, bone sialoprotein (BSP), dentin sialophosphoprotein (DSPP) genes, and alizarin red staining for mineralization at different time points were analyzed. The tubular network formation on Matrigel and the gene expression levels of CD117, VEGF, CD34, and Flk-1 were used as assays to analyze angiogenesis. Results: The quantification of ALP in DPSC:EC cocultures revealed a greater ALP activity compared with DPSC-alone cultures. At all the time points, 1:1 cultures showed a significantly greater ALP activity than that of DPSC-alone cultures. Alizarin red staining and quantification revealed a much greater amount of calcification in the 1:1 and 1:5 cocultures compared with other cultures (P <.01). The expression levels of ALP, BSP, and DSPP genes further confirmed the greater osteo-/odontogenic differentiation in cocultures compared with those of DPSC-alone cultures. Matrigel assay showed that the addition of DPSCs stabilized preexisting vessel-like structures formed by ECs and increased the longevity of them. Conclusions: Direct coculture of DPSCs and ECs enhances the in vitro differentiation toward osteo-/odontogenic and angiogenic phenotypes. © 2012 American Association of Endodontists. | ||||
Persistent Identifier | http://hdl.handle.net/10722/146835 | ||||
ISSN | 2023 Impact Factor: 3.5 2023 SCImago Journal Rankings: 1.356 | ||||
ISI Accession Number ID |
Funding Information: Supported by GRF grants from the Research Grants Council of Hong Kong (grant number: HKU 785010M). | ||||
References | |||||
Grants |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dissanayaka, WL | en_HK |
dc.contributor.author | Zhan, X | en_HK |
dc.contributor.author | Zhang, C | en_HK |
dc.contributor.author | Hargreaves, KM | en_HK |
dc.contributor.author | Jin, L | en_HK |
dc.contributor.author | Tong, EHY | en_HK |
dc.date.accessioned | 2012-05-23T05:28:08Z | - |
dc.date.available | 2012-05-23T05:28:08Z | - |
dc.date.issued | 2012 | en_HK |
dc.identifier.citation | Journal Of Endodontics, 2012, v. 38 n. 4, p. 454-463 | en_HK |
dc.identifier.issn | 0099-2399 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/146835 | - |
dc.description.abstract | Introduction: Dental pulp stem cells (DPSCs) have received much attention as a promising population of stem cells in regenerative endodontics. Securing a good blood supply during regeneration is a challenging task because of the constricted apical canal opening, which allows only a limited blood supply. The aim of this study was to investigate any potential synergistic effects of dental pulp stem cells and endothelial cells (ECs) on osteo-/odontogenic and angiogenic differentiation in vitro. Methods: Different ratios of DPSCs and ECs were cultured in direct contact using optimized medium for coculture. The 70% confluent cocultures were incubated in the osteo-/odontogenic differentiation medium for up to 3 weeks. Alkaline phosphatase (ALP) activity, the expression levels of ALP, bone sialoprotein (BSP), dentin sialophosphoprotein (DSPP) genes, and alizarin red staining for mineralization at different time points were analyzed. The tubular network formation on Matrigel and the gene expression levels of CD117, VEGF, CD34, and Flk-1 were used as assays to analyze angiogenesis. Results: The quantification of ALP in DPSC:EC cocultures revealed a greater ALP activity compared with DPSC-alone cultures. At all the time points, 1:1 cultures showed a significantly greater ALP activity than that of DPSC-alone cultures. Alizarin red staining and quantification revealed a much greater amount of calcification in the 1:1 and 1:5 cocultures compared with other cultures (P <.01). The expression levels of ALP, BSP, and DSPP genes further confirmed the greater osteo-/odontogenic differentiation in cocultures compared with those of DPSC-alone cultures. Matrigel assay showed that the addition of DPSCs stabilized preexisting vessel-like structures formed by ECs and increased the longevity of them. Conclusions: Direct coculture of DPSCs and ECs enhances the in vitro differentiation toward osteo-/odontogenic and angiogenic phenotypes. © 2012 American Association of Endodontists. | en_HK |
dc.language | eng | en_US |
dc.publisher | Elsevier Inc. The Journal's web site is located at http://www.jendodon.com | en_HK |
dc.relation.ispartof | Journal of Endodontics | en_HK |
dc.subject | Dental pulp stem cells | en_HK |
dc.subject | endothelial cells | en_HK |
dc.subject | regenerative endodontics | en_HK |
dc.subject | synergism | en_HK |
dc.title | Coculture of dental pulp stem cells with endothelial cells enhances osteo-/odontogenic and angiogenic potential in vitro | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Jin, L:ljjin@hkucc.hku.hk | en_HK |
dc.identifier.authority | Jin, L=rp00028 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.joen.2011.12.024 | en_HK |
dc.identifier.pmid | 22414829 | - |
dc.identifier.scopus | eid_2-s2.0-84862797487 | - |
dc.identifier.hkuros | 199779 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-84858337948&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 38 | en_HK |
dc.identifier.issue | 4 | en_HK |
dc.identifier.spage | 454 | en_HK |
dc.identifier.epage | 463 | en_HK |
dc.identifier.eissn | 1878-3554 | - |
dc.identifier.isi | WOS:000302926200008 | - |
dc.publisher.place | United States | en_HK |
dc.relation.project | Synergistic effects of endothelial progenitor cells and apical papilla stem cells on dental pulp regeneration | - |
dc.identifier.scopusauthorid | Dissanayaka, WL=36196419000 | en_HK |
dc.identifier.scopusauthorid | Zhan, X=54908728000 | en_HK |
dc.identifier.scopusauthorid | Zhang, C=54908586900 | en_HK |
dc.identifier.scopusauthorid | Hargreaves, KM=7006655213 | en_HK |
dc.identifier.scopusauthorid | Jin, L=7403328850 | en_HK |
dc.identifier.scopusauthorid | Tong, EHY=54908752000 | en_HK |
dc.identifier.issnl | 0099-2399 | - |