File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1198/016214508000000490
- Scopus: eid_2-s2.0-54949151496
- WOS: WOS:000260193700031
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Power-transformed linear quantile regression with censored data
Title | Power-transformed linear quantile regression with censored data |
---|---|
Authors | |
Keywords | Asymptotic normality Box-Cox transformation Empirical estimation Median regression Random censoring Survival data Transformation model |
Issue Date | 2008 |
Publisher | American Statistical Association. The Journal's web site is located at http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main |
Citation | Journal Of The American Statistical Association, 2008, v. 103 n. 483, p. 1214-1224 How to Cite? |
Abstract | We propose a class of power-transformed linear quantile regression models for survival data subject to random censoring. The estimation procedure follows two sequential steps. First, for a given transformation parameter, we can easily obtain the estimates for the regression coefficients by minimizing a well-defined convex objective function. Second, we can estimate the transformation parameter based on a model discrepancy measure by constructing cumulative sum processes. We show that both the regression and transformation parameter estimates are strongly consistent and asymptotically normal. The variance-covariance matrix depends on the unknown density function of the error term, so we estimate the variance by the usual bootstrap approach. We examine the performance of the proposed method for finite sample sizes through simulation studies and illustrate it with a real data example. © 2008 American Statistical Association. |
Persistent Identifier | http://hdl.handle.net/10722/146590 |
ISSN | 2023 Impact Factor: 3.0 2023 SCImago Journal Rankings: 3.922 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yin, G | en_HK |
dc.contributor.author | Zeng, D | en_HK |
dc.contributor.author | Li, H | en_HK |
dc.date.accessioned | 2012-05-02T08:37:14Z | - |
dc.date.available | 2012-05-02T08:37:14Z | - |
dc.date.issued | 2008 | en_HK |
dc.identifier.citation | Journal Of The American Statistical Association, 2008, v. 103 n. 483, p. 1214-1224 | en_HK |
dc.identifier.issn | 0162-1459 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/146590 | - |
dc.description.abstract | We propose a class of power-transformed linear quantile regression models for survival data subject to random censoring. The estimation procedure follows two sequential steps. First, for a given transformation parameter, we can easily obtain the estimates for the regression coefficients by minimizing a well-defined convex objective function. Second, we can estimate the transformation parameter based on a model discrepancy measure by constructing cumulative sum processes. We show that both the regression and transformation parameter estimates are strongly consistent and asymptotically normal. The variance-covariance matrix depends on the unknown density function of the error term, so we estimate the variance by the usual bootstrap approach. We examine the performance of the proposed method for finite sample sizes through simulation studies and illustrate it with a real data example. © 2008 American Statistical Association. | en_HK |
dc.language | eng | en_US |
dc.publisher | American Statistical Association. The Journal's web site is located at http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main | en_HK |
dc.relation.ispartof | Journal of the American Statistical Association | en_HK |
dc.subject | Asymptotic normality | en_HK |
dc.subject | Box-Cox transformation | en_HK |
dc.subject | Empirical estimation | en_HK |
dc.subject | Median regression | en_HK |
dc.subject | Random censoring | en_HK |
dc.subject | Survival data | en_HK |
dc.subject | Transformation model | en_HK |
dc.title | Power-transformed linear quantile regression with censored data | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Yin, G: gyin@hku.hk | en_HK |
dc.identifier.authority | Yin, G=rp00831 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1198/016214508000000490 | en_HK |
dc.identifier.scopus | eid_2-s2.0-54949151496 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-54949151496&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 103 | en_HK |
dc.identifier.issue | 483 | en_HK |
dc.identifier.spage | 1214 | en_HK |
dc.identifier.epage | 1224 | en_HK |
dc.identifier.eissn | 1537-274X | - |
dc.identifier.isi | WOS:000260193700031 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Yin, G=8725807500 | en_HK |
dc.identifier.scopusauthorid | Zeng, D=8725807700 | en_HK |
dc.identifier.scopusauthorid | Li, H=8423900800 | en_HK |
dc.identifier.citeulike | 3389107 | - |
dc.identifier.issnl | 0162-1459 | - |