File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.patcog.2012.01.007
- Scopus: eid_2-s2.0-84862798516
- WOS: WOS:000302451000022
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Regularized orthogonal linear discriminant analysis
Title | Regularized orthogonal linear discriminant analysis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Authors | |||||||||||
Keywords | Data dimensionality reduction Orthogonal linear discriminant analysis QR factorization Regularized orthogonal linear discriminant analysis | ||||||||||
Issue Date | 2012 | ||||||||||
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/pr | ||||||||||
Citation | Pattern Recognition, 2012, v. 45 n. 7, p. 2719-2732 How to Cite? | ||||||||||
Abstract | In this paper the regularized orthogonal linear discriminant analysis (ROLDA) is studied. The major issue of the regularized linear discriminant analysis is to choose an appropriate regularization parameter. In existing regularized linear discriminant analysis methods, they all select the best regularization parameter from a given parameter candidate set by using cross-validation for classification. An obvious limitation of such regularized linear discriminant analysis methods is that it is not clear how to choose an appropriate candidate set. Therefore, up to now, there is no concrete mathematical theory available in selecting an appropriate regularization parameter in practical applications of the regularized linear discriminant analysis. The present work is to fill this gap. Here we derive the mathematical relationship between orthogonal linear discriminant analysis and the regularized orthogonal linear discriminant analysis first, and then by means of this relationship we find a mathematical criterion for selecting the regularization parameter in ROLDA and consequently we develop a new regularized orthogonal linear discriminant analysis method, in which no candidate set of regularization parameter is needed. The effectiveness of our proposed regularized orthogonal linear discriminant analysis is illustrated by some real-world data sets. © 2012 Elsevier Ltd. All rights reserved. | ||||||||||
Persistent Identifier | http://hdl.handle.net/10722/145892 | ||||||||||
ISSN | 2023 Impact Factor: 7.5 2023 SCImago Journal Rankings: 2.732 | ||||||||||
ISI Accession Number ID |
Funding Information: This author was supported in part by grants from The University of Hong Kong, and the Research Grant Council of Hong Kong. | ||||||||||
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ching, WK | en_HK |
dc.contributor.author | Chu, D | en_HK |
dc.contributor.author | Liao, LZ | en_HK |
dc.contributor.author | Wang, X | en_HK |
dc.date.accessioned | 2012-03-27T09:00:58Z | - |
dc.date.available | 2012-03-27T09:00:58Z | - |
dc.date.issued | 2012 | en_HK |
dc.identifier.citation | Pattern Recognition, 2012, v. 45 n. 7, p. 2719-2732 | en_HK |
dc.identifier.issn | 0031-3203 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/145892 | - |
dc.description.abstract | In this paper the regularized orthogonal linear discriminant analysis (ROLDA) is studied. The major issue of the regularized linear discriminant analysis is to choose an appropriate regularization parameter. In existing regularized linear discriminant analysis methods, they all select the best regularization parameter from a given parameter candidate set by using cross-validation for classification. An obvious limitation of such regularized linear discriminant analysis methods is that it is not clear how to choose an appropriate candidate set. Therefore, up to now, there is no concrete mathematical theory available in selecting an appropriate regularization parameter in practical applications of the regularized linear discriminant analysis. The present work is to fill this gap. Here we derive the mathematical relationship between orthogonal linear discriminant analysis and the regularized orthogonal linear discriminant analysis first, and then by means of this relationship we find a mathematical criterion for selecting the regularization parameter in ROLDA and consequently we develop a new regularized orthogonal linear discriminant analysis method, in which no candidate set of regularization parameter is needed. The effectiveness of our proposed regularized orthogonal linear discriminant analysis is illustrated by some real-world data sets. © 2012 Elsevier Ltd. All rights reserved. | en_HK |
dc.language | eng | en_US |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/pr | en_HK |
dc.relation.ispartof | Pattern Recognition | en_HK |
dc.subject | Data dimensionality reduction | en_HK |
dc.subject | Orthogonal linear discriminant analysis | en_HK |
dc.subject | QR factorization | en_HK |
dc.subject | Regularized orthogonal linear discriminant analysis | en_HK |
dc.title | Regularized orthogonal linear discriminant analysis | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Ching, WK:wching@hku.hk | en_HK |
dc.identifier.authority | Ching, WK=rp00679 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.patcog.2012.01.007 | en_HK |
dc.identifier.scopus | eid_2-s2.0-84862798516 | - |
dc.identifier.hkuros | 198996 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-84857995419&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 45 | en_HK |
dc.identifier.issue | 7 | en_HK |
dc.identifier.spage | 2719 | en_HK |
dc.identifier.epage | 2732 | en_HK |
dc.identifier.isi | WOS:000302451000022 | - |
dc.publisher.place | Netherlands | en_HK |
dc.identifier.scopusauthorid | Ching, WK=13310265500 | en_HK |
dc.identifier.scopusauthorid | Chu, D=7201734138 | en_HK |
dc.identifier.scopusauthorid | Liao, LZ=26642961500 | en_HK |
dc.identifier.scopusauthorid | Wang, X=54942097300 | en_HK |
dc.identifier.citeulike | 10296103 | - |
dc.identifier.issnl | 0031-3203 | - |