File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Protein alterations associated with temozolomide resistance in subclones of human glioblastoma cell lines.

TitleProtein alterations associated with temozolomide resistance in subclones of human glioblastoma cell lines.
Authors
KeywordsChemoresistance
Glioma
Proteomics
Temozolomide
Two-dimensional gel electrophoresis
Issue Date2012
PublisherSpringer Netherlands
Citation
Journal Of Neuro-Oncology, 2012, v. 107 n. 1, p. 89-100 How to Cite?
Abstract
Temozolomide (TMZ) is the standard chemotherapeutic agent for human malignant glioma, but intrinsic or acquired chemoresistance represents a major obstacle to successful treatment of this highly lethal group of tumours. Obtaining better understanding of the molecular mechanisms underlying TMZ resistance in malignant glioma is important for the development of better treatment strategies. We have successfully established a passage control line (D54-C10) and resistant variants (D54-P5 and D54-P10) from the parental TMZ-sensitive malignant glioma cell line D54-C0. The resistant sub-cell lines showed alterations in cell morphology, enhanced cell adhesion, increased migration capacities, and cell cycle arrests. Proteomic analysis identified a set of proteins that showed gradual changes in expression according to their 50% inhibitory concentration (IC(50)). Successful validation was provided by transcript profiling in another malignant glioma cell line U87-MG and its resistant counterparts. Moreover, three of the identified proteins (vimentin, cathepsin D and prolyl 4-hydroxylase, beta polypeptide) were confirmed to be upregulated in high-grade glioma. Our data suggest that acquired TMZ resistance in human malignant glioma is associated with promotion of malignant phenotypes, and our reported molecular candidates may serve not only as markers of chemoresistance but also as potential therapeutic targets in the treatment of TMZ-resistant human malignant glioma, providing a platform for future investigations.
Persistent Identifierhttp://hdl.handle.net/10722/144940
ISSN
2013 SCImago Journal Rankings: 1.342
PubMed Central ID
ISI Accession Number ID
Funding AgencyGrant Number
University of Hong Kong201007176020
Funding Information:

We would like to express our sincere gratitude for the insightful advice and support of Dr. Ching Fai Fung. The work was supported by a small project grant from the University of Hong Kong (project code 201007176020).

References

Tate MC, Aghi MK (2009) Biology of angiogenesis and invasion in glioma. Neurotherapeutics 6:447–457 doi: 10.1016/j.nurt.2009.04.001

Norden AD, Wen PY (2006) Glioma therapy in adults. Neurologist 12:279–292 doi: 10.1097/01.nrl.0000250928.26044.47

Mason WP (2008) Emerging drugs for malignant glioma. Expert Opin Emerg Drugs 13:81–94 doi: 10.1517/14728214.13.1.81

Auger N, Thillet J, Wanherdrick K, Idbaih A, Legrier ME, Dutrillaux B, Sanson M, Poupon MF (2006) Genetic alterations associated with acquired temozolomide resistance in SNB-19, a human glioma cell line. Mol Cancer Ther 5:2182–2192 doi: 10.1158/1535-7163.MCT-05-0428

a Fischer J, Costa Carvalho P, da Fonseca CO, Liao L, Degrave WM, a Carvalho M, Yates JR, Domont GB (2011) Chemo-resistant protein expression pattern of glioblastoma cells (A172) to perillyl alcohol. J Proteome Res 10:153–160 doi: 10.1021/pr100677g

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996 doi: 10.1056/NEJMoa043330

Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466 doi: 10.1016/S1470-2045(09)70025-7

Nagasubramanian R, Dolan ME (2003) Temozolomide: realizing the promise and potential. Curr Opin Oncol 15:412–418 doi: 10.1097/00001622-200311000-00002

Fortin D (2004) The blood-brain barrier should not be underestimated in neuro-oncology. Rev Neurol (Paris) 160:523–532 doi: 10.1016/S0035-3787(04)70981-9

Trivedi RN, Almeida KH, Fornsaglio JL, Schamus S, Sobol RW (2005) The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res 65:6394–6400 doi: 10.1158/0008-5472.CAN-05-0715

Oliva CR, Nozell SE, Diers A, McClugage SG 3rd, Sarkaria JN, Markert JM, Darley-Usmar VM, Bailey SM, Gillespie GY, Landar A, Griguer CE (2010) Acquisition of temozolomide chemoresistance in gliomas leads to remodeling of mitochondrial electron transport chain. J Biol Chem 285:39759–39767 doi: 10.1074/jbc.M110.147504

Niclou SP, Fack F, Rajcevic U (2010) Glioma proteomics: status and perspectives. J Proteomics 73:1823–1838 doi: 10.1016/j.jprot.2010.03.007

Jiang R, Mircean C, Shmulevich I, Cogdell D, Jia Y, Tabus I, Aldape K, Sawaya R, Bruner JM, Fuller GN, Zhang W (2006) Pathway alterations during glioma progression revealed by reverse phase protein lysate arrays. Proteomics 6:2964–2971 doi: 10.1002/pmic.200500555

Li J, Zhuang Z, Okamoto H, Vortmeyer AO, Park DM, Furuta M, Lee YS, Oldfield EH, Zeng W, Weil RJ (2006) Proteomic profiling distinguishes astrocytomas and identifies differential tumor markers. Neurology 66:733–736 doi: 10.1212/01.wnl.0000201270.90502.d0

Petrik V, Saadoun S, Loosemore A, Hobbs J, Opstad KS, Sheldon J, Tarelli E, Howe FA, Bell BA, Papadopoulos MC (2008) Serum alpha 2-HS glycoprotein predicts survival in patients with glioblastoma. Clin Chem 54:713–722 doi: 10.1373/clinchem.2007.096792

Schuhmann MU, Zucht HD, Nassimi R, Heine G, Schneekloth CG, Stuerenburg HJ, Selle H (2010) Peptide screening of cerebrospinal fluid in patients with glioblastoma multiforme. Eur J Surg Oncol 36:201–207 doi: 10.1016/j.ejso.2009.07.010

Seyfried NT, Huysentruyt LC, Atwood JA 3rd, Xia Q, Seyfried TN, Orlando R (2008) Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: a membrane proteomics approach. Cancer Lett 263:243–252 doi: 10.1016/j.canlet.2008.01.007

Bian XW, Xu JP, Ping YF, Wang Y, Chen JH, Xu CP, Wu YZ, Wu J, Zhou XD, Chen YS, Shi JQ, Wang JM (2008) Unique proteomic features induced by a potential antiglioma agent, Nordy (dl-nordihydroguaiaretic acid), in glioma cells. Proteomics 8:484–494 doi: 10.1002/pmic.200700054

Rajcevic U, Petersen K, Knol JC, Loos M, Bougnaud S, Klychnikov O, Li KW, Pham TV, Wang J, Miletic H, Peng Z, Bjerkvig R, Jimenez CR, Niclou SP (2009) iTRAQ-based proteomics profiling reveals increased metabolic activity and cellular cross-talk in angiogenic compared with invasive glioblastoma phenotype. Mol Cell Proteomics 8:2595–2612 doi: 10.1074/mcp.M900124-MCP200

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109 doi: 10.1007/s00401-007-0243-4

Luk JM, Lam CT, Siu AF, Lam BY, Ng IO, Hu MY, Che CM, Fan ST (2006) Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics 6:1049–1057 doi: 10.1002/pmic.200500306

Sun S, Poon RT, Lee NP, Yeung C, Chan KL, Ng IO, Day PJ, Luk JM (2010) Proteomics of hepatocellular carcinoma: serum vimentin as a surrogate marker for small tumors (< or = 2 cm). J Proteome Res 9:1923–1930 doi: 10.1021/pr901085z

Sun S, Xu MZ, Poon RT, Day PJ, Luk JM (2010) Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J Proteome Res 9:70–78 doi: 10.1021/pr9002118

Maxwell JA, Johnson SP, McLendon RE, Lister DW, Horne KS, Rasheed A, Quinn JA, Ali-Osman F, Friedman AH, Modrich PL, Bigner DD, Friedman HS (2008) Mismatch repair deficiency does not mediate clinical resistance to temozolomide in malignant glioma. Clin Cancer Res 14:4859–4868 doi: 10.1158/1078-0432.CCR-07-4807

Augustine CK, Yoo JS, Potti A, Yoshimoto Y, Zipfel PA, Friedman HS, Nevins JR, Ali-Osman F, Tyler DS (2009) Genomic and molecular profiling predicts response to temozolomide in melanoma. Clin Cancer Res 15:502–510 doi: 10.1158/1078-0432.CCR-08-1916

Hirose Y, Katayama M, Mirzoeva OK, Berger MS, Pieper RO (2005) Akt activation suppresses Chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide-induced mitotic catastrophe and cellular senescence. Cancer Res 65:4861–4869 doi: 10.1158/0008-5472.CAN-04-2633

Kohmo S, Kijima T, Otani Y, Mori M, Minami T, Takahashi R, Nagatomo I, Takeda Y, Kida H, Goya S, Yoshida M, Kumagai T, Tachibana I, Yokota S, Kawase I (2010) Cell surface tetraspanin CD9 mediates chemoresistance in small cell lung cancer. Cancer Res 70:8025–8035 doi: 10.1158/0008-5472.CAN-10-0996

Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E (2010) Multiple roles of the cell cycle inhibitor p21 (CDKN1A) in the DNA damage response. Mutat Res 704:12–20 doi: 10.1016/j.mrrev.2010.01.009

Chaudhary KS, Abel PD, Stamp GW, Lalani E (2001) Differential expression of cell death regulators in response to thapsigargin and adriamycin in Bcl-2 transfected DU145 prostatic cancer cells. J Pathol 193:522–529 doi: 10.1002/1096-9896(2000)9999:9999%3C::AID-PATH821%3E3.0.CO;2-Y

McInroy L, Maatta A (2007) Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem Biophys Res Commun 360:109–114 doi: 10.1016/j.bbrc.2007.06.036

Trog D, Yeghiazaryan K, Schild HH, Golubnitschaja O (2008) Up-regulation of vimentin expression in low-density malignant glioma cells as immediate and late effects under irradiation and temozolomide treatment. Amino Acids 34:539–545 doi: 10.1007/s00726-007-0007-4

Berchem G, Glondu M, Gleizes M, Brouillet JP, Vignon F, Garcia M, Liaudet-Coopman E (2002) Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene 21:5951–5955 doi: 10.1038/sj.onc.1205745

Fukuda ME, Iwadate Y, Machida T, Hiwasa T, Nimura Y, Nagai Y, Takiguchi M, Tanzawa H, Yamaura A, Seki N (2005) Cathepsin D is a potential serum marker for poor prognosis in glioma patients. Cancer Res 65:5190–5194 doi: 10.1158/0008-5472.CAN-04-4134

Sagulenko V, Muth D, Sagulenko E, Paffhausen T, Schwab M, Westermann F (2008) Cathepsin D protects human neuroblastoma cells from doxorubicin-induced cell death. Carcinogenesis 29:1869–1877 doi: 10.1093/carcin/bgn147

Goplen D, Wang J, Enger PO, Tysnes BB, Terzis AJ, Laerum OD, Bjerkvig R (2006) Protein disulfide isomerase expression is related to the invasive properties of malignant glioma. Cancer Res 66:9895–9902 doi: 10.1158/0008-5472.CAN-05-4589

Cicchillitti L, Della Corte A, Di Michele M, Donati MB, Rotilio D, Scambia G (2010) Characterisation of a multimeric protein complex associated with ERp57 within the nucleus in paclitaxel-sensitive and -resistant epithelial ovarian cancer cells: the involvement of specific conformational states of beta-actin. Int J Oncol 37:445–454 doi: 10.3892/ijo_00000693

Fu Y, Li J, Lee AS (2007) GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 67:3734–3740 doi: 10.1158/0008-5472.CAN-06-4594

Bulankina AV, Deggerich A, Wenzel D, Mutenda K, Wittmann JG, Rudolph MG, Burger KN, Honing S (2009) TIP47 functions in the biogenesis of lipid droplets. J Cell Biol 185:641–655 doi: 10.1083/jcb.200812042

Hocsak E, Racz B, Szabo A, Mester L, Rapolti E, Pozsgai E, Javor S, Bellyei S, Gallyas F Jr, Sumegi B, Szigeti A (2010) TIP47 protects mitochondrial membrane integrity and inhibits oxidative-stress-induced cell death. FEBS Lett 584:2953–2960 doi: 10.1016/j.febslet.2010.05.027

Hocsak E, Racz B, Szabo A, Pozsgai E, Szigeti A, Szigeti E, Gallyas F Jr, Sumegi B, Javor S, Bellyei S (2010) TIP47 confers resistance to taxol-induced cell death by preventing the nuclear translocation of AIF and endonuclease G. Eur J Cell Biol 89:853–861 doi: 10.1016/j.ejcb.2010.06.010

Heiska L, Carpen O (2005) Src phosphorylates ezrin at tyrosine 477 and induces a phosphospecific association between ezrin and a kelch-repeat protein family member. J Biol Chem 280:10244–10252 doi: 10.1074/jbc.M411353200

Di Cristofano C, Leopizzi M, Miraglia A, Sardella B, Moretti V, Ferrara A, Petrozza V, Della Rocca C (2010) Phosphorylated ezrin is located in the nucleus of the osteosarcoma cell. Mod Pathol 23:1012–1020 doi: 10.1038/modpathol.2010.77

Sun QL, Sha HF, Yang XH, Bao GL, Lu J, Xie YY (2011) Comparative proteomic analysis of paclitaxel sensitive A549 lung adenocarcinoma cell line and its resistant counterpart A549-Taxol. J Cancer Res Clin Oncol 137:521–532 doi: 10.1007/s00432-010-0913-9

 

Author Affiliations
  1. University of Manchester
  2. The University of Hong Kong
DC FieldValueLanguage
dc.contributor.authorSun, Sen_HK
dc.contributor.authorWong, TSen_HK
dc.contributor.authorZhang, XQen_HK
dc.contributor.authorPu, JKen_HK
dc.contributor.authorLee, NPen_HK
dc.contributor.authorDay, PJen_HK
dc.contributor.authorNg, GKen_HK
dc.contributor.authorLui, WMen_HK
dc.contributor.authorLeung, GKen_HK
dc.date.accessioned2012-02-21T05:43:33Z-
dc.date.available2012-02-21T05:43:33Z-
dc.date.issued2012en_HK
dc.identifier.citationJournal Of Neuro-Oncology, 2012, v. 107 n. 1, p. 89-100en_HK
dc.identifier.issn1573-7373en_HK
dc.identifier.urihttp://hdl.handle.net/10722/144940-
dc.description.abstractTemozolomide (TMZ) is the standard chemotherapeutic agent for human malignant glioma, but intrinsic or acquired chemoresistance represents a major obstacle to successful treatment of this highly lethal group of tumours. Obtaining better understanding of the molecular mechanisms underlying TMZ resistance in malignant glioma is important for the development of better treatment strategies. We have successfully established a passage control line (D54-C10) and resistant variants (D54-P5 and D54-P10) from the parental TMZ-sensitive malignant glioma cell line D54-C0. The resistant sub-cell lines showed alterations in cell morphology, enhanced cell adhesion, increased migration capacities, and cell cycle arrests. Proteomic analysis identified a set of proteins that showed gradual changes in expression according to their 50% inhibitory concentration (IC(50)). Successful validation was provided by transcript profiling in another malignant glioma cell line U87-MG and its resistant counterparts. Moreover, three of the identified proteins (vimentin, cathepsin D and prolyl 4-hydroxylase, beta polypeptide) were confirmed to be upregulated in high-grade glioma. Our data suggest that acquired TMZ resistance in human malignant glioma is associated with promotion of malignant phenotypes, and our reported molecular candidates may serve not only as markers of chemoresistance but also as potential therapeutic targets in the treatment of TMZ-resistant human malignant glioma, providing a platform for future investigations.en_HK
dc.languageEngen_US
dc.publisherSpringer Netherlandsen_US
dc.relation.ispartofJournal of Neuro-Oncologyen_HK
dc.rightsThe Author(s)en_US
dc.rightsCreative Commons: Attribution 3.0 Hong Kong Licenseen_US
dc.subjectChemoresistanceen_HK
dc.subjectGliomaen_HK
dc.subjectProteomicsen_HK
dc.subjectTemozolomideen_HK
dc.subjectTwo-dimensional gel electrophoresisen_HK
dc.titleProtein alterations associated with temozolomide resistance in subclones of human glioblastoma cell lines.en_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4551/resserv?sid=springerlink&genre=article&atitle=Protein alterations associated with temozolomide resistance in subclones of human glioblastoma cell lines&title=Journal of Neuro-Oncology&issn=0167594X&date=2012-03-01&volume=107&issue=1& spage=89&authors=Stella Sun, T. S. Wong, X. Q. Zhang, <i>et al.</i>en_US
dc.identifier.emailWong, TS: thiansze@graduate.hku.hken_HK
dc.identifier.emailLee, NP: nikkilee@hku.hken_HK
dc.identifier.authorityWong, TS=rp00478en_HK
dc.identifier.authorityLee, NP=rp00263en_HK
dc.description.naturepublished_or_final_versionen_US
dc.identifier.doi10.1007/s11060-011-0729-8en_HK
dc.identifier.pmid21979894en_HK
dc.identifier.pmcidPMC3273683-
dc.identifier.scopuseid_2-s2.0-84861697239en_HK
dc.identifier.hkuros206154-
dc.relation.referencesTate MC, Aghi MK (2009) Biology of angiogenesis and invasion in glioma. Neurotherapeutics 6:447–457en_US
dc.relation.referencesdoi: 10.1016/j.nurt.2009.04.001en_US
dc.relation.referencesNorden AD, Wen PY (2006) Glioma therapy in adults. Neurologist 12:279–292en_US
dc.relation.referencesdoi: 10.1097/01.nrl.0000250928.26044.47en_US
dc.relation.referencesMason WP (2008) Emerging drugs for malignant glioma. Expert Opin Emerg Drugs 13:81–94en_US
dc.relation.referencesdoi: 10.1517/14728214.13.1.81en_US
dc.relation.referencesAuger N, Thillet J, Wanherdrick K, Idbaih A, Legrier ME, Dutrillaux B, Sanson M, Poupon MF (2006) Genetic alterations associated with acquired temozolomide resistance in SNB-19, a human glioma cell line. Mol Cancer Ther 5:2182–2192en_US
dc.relation.referencesdoi: 10.1158/1535-7163.MCT-05-0428en_US
dc.relation.referencesa Fischer J, Costa Carvalho P, da Fonseca CO, Liao L, Degrave WM, a Carvalho M, Yates JR, Domont GB (2011) Chemo-resistant protein expression pattern of glioblastoma cells (A172) to perillyl alcohol. J Proteome Res 10:153–160en_US
dc.relation.referencesdoi: 10.1021/pr100677gen_US
dc.relation.referencesStupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996en_US
dc.relation.referencesdoi: 10.1056/NEJMoa043330en_US
dc.relation.referencesStupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466en_US
dc.relation.referencesdoi: 10.1016/S1470-2045(09)70025-7en_US
dc.relation.referencesDehdashti AR, Hegi ME, Regli L, Pica A, Stupp R (2006) New trends in the medical management of glioblastoma multiforme: the role of temozolomide chemotherapy. Neurosurg Focus 20:E6en_US
dc.relation.referencesNagasubramanian R, Dolan ME (2003) Temozolomide: realizing the promise and potential. Curr Opin Oncol 15:412–418en_US
dc.relation.referencesdoi: 10.1097/00001622-200311000-00002en_US
dc.relation.referencesFriedman HS, Johnson SP, Dong Q, Schold SC, Rasheed BK, Bigner SH, Ali-Osman F, Dolan E, Colvin OM, Houghton P, Germain G, Drummond JT, Keir S, Marcelli S, Bigner DD, Modrich P (1997) Methylator resistance mediated by mismatch repair deficiency in a glioblastoma multiforme xenograft. Cancer Res 57:2933–2936en_US
dc.relation.referencesBocangel DB, Finkelstein S, Schold SC, Bhakat KK, Mitra S, Kokkinakis DM (2002) Multifaceted resistance of gliomas to temozolomide. Clin Cancer Res 8:2725–2734en_US
dc.relation.referencesFortin D (2004) The blood-brain barrier should not be underestimated in neuro-oncology. Rev Neurol (Paris) 160:523–532en_US
dc.relation.referencesdoi: 10.1016/S0035-3787(04)70981-9en_US
dc.relation.referencesTrivedi RN, Almeida KH, Fornsaglio JL, Schamus S, Sobol RW (2005) The role of base excision repair in the sensitivity and resistance to temozolomide-mediated cell death. Cancer Res 65:6394–6400en_US
dc.relation.referencesdoi: 10.1158/0008-5472.CAN-05-0715en_US
dc.relation.referencesOliva CR, Nozell SE, Diers A, McClugage SG 3rd, Sarkaria JN, Markert JM, Darley-Usmar VM, Bailey SM, Gillespie GY, Landar A, Griguer CE (2010) Acquisition of temozolomide chemoresistance in gliomas leads to remodeling of mitochondrial electron transport chain. J Biol Chem 285:39759–39767en_US
dc.relation.referencesdoi: 10.1074/jbc.M110.147504en_US
dc.relation.referencesLe Calve B, Rynkowski M, Le Mercier M, Bruyere C, Lonez C, Gras T, Haibe-Kains B, Bontempi G, Decaestecker C, Ruysschaert JM, Kiss R, Lefranc F (2010) Long-term in vitro treatment of human glioblastoma cells with temozolomide increases resistance in vivo through up-regulation of GLUT transporter and aldo-keto reductase enzyme AKR1C expression. Neoplasia 12:727–739en_US
dc.relation.referencesNiclou SP, Fack F, Rajcevic U (2010) Glioma proteomics: status and perspectives. J Proteomics 73:1823–1838en_US
dc.relation.referencesdoi: 10.1016/j.jprot.2010.03.007en_US
dc.relation.referencesJiang R, Mircean C, Shmulevich I, Cogdell D, Jia Y, Tabus I, Aldape K, Sawaya R, Bruner JM, Fuller GN, Zhang W (2006) Pathway alterations during glioma progression revealed by reverse phase protein lysate arrays. Proteomics 6:2964–2971en_US
dc.relation.referencesdoi: 10.1002/pmic.200500555en_US
dc.relation.referencesLi J, Zhuang Z, Okamoto H, Vortmeyer AO, Park DM, Furuta M, Lee YS, Oldfield EH, Zeng W, Weil RJ (2006) Proteomic profiling distinguishes astrocytomas and identifies differential tumor markers. Neurology 66:733–736en_US
dc.relation.referencesdoi: 10.1212/01.wnl.0000201270.90502.d0en_US
dc.relation.referencesPetrik V, Saadoun S, Loosemore A, Hobbs J, Opstad KS, Sheldon J, Tarelli E, Howe FA, Bell BA, Papadopoulos MC (2008) Serum alpha 2-HS glycoprotein predicts survival in patients with glioblastoma. Clin Chem 54:713–722en_US
dc.relation.referencesdoi: 10.1373/clinchem.2007.096792en_US
dc.relation.referencesSchuhmann MU, Zucht HD, Nassimi R, Heine G, Schneekloth CG, Stuerenburg HJ, Selle H (2010) Peptide screening of cerebrospinal fluid in patients with glioblastoma multiforme. Eur J Surg Oncol 36:201–207en_US
dc.relation.referencesdoi: 10.1016/j.ejso.2009.07.010en_US
dc.relation.referencesSeyfried NT, Huysentruyt LC, Atwood JA 3rd, Xia Q, Seyfried TN, Orlando R (2008) Up-regulation of NG2 proteoglycan and interferon-induced transmembrane proteins 1 and 3 in mouse astrocytoma: a membrane proteomics approach. Cancer Lett 263:243–252en_US
dc.relation.referencesdoi: 10.1016/j.canlet.2008.01.007en_US
dc.relation.referencesBian XW, Xu JP, Ping YF, Wang Y, Chen JH, Xu CP, Wu YZ, Wu J, Zhou XD, Chen YS, Shi JQ, Wang JM (2008) Unique proteomic features induced by a potential antiglioma agent, Nordy (dl-nordihydroguaiaretic acid), in glioma cells. Proteomics 8:484–494en_US
dc.relation.referencesdoi: 10.1002/pmic.200700054en_US
dc.relation.referencesRajcevic U, Petersen K, Knol JC, Loos M, Bougnaud S, Klychnikov O, Li KW, Pham TV, Wang J, Miletic H, Peng Z, Bjerkvig R, Jimenez CR, Niclou SP (2009) iTRAQ-based proteomics profiling reveals increased metabolic activity and cellular cross-talk in angiogenic compared with invasive glioblastoma phenotype. Mol Cell Proteomics 8:2595–2612en_US
dc.relation.referencesdoi: 10.1074/mcp.M900124-MCP200en_US
dc.relation.referencesLouis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109en_US
dc.relation.referencesdoi: 10.1007/s00401-007-0243-4en_US
dc.relation.referencesLuk JM, Lam CT, Siu AF, Lam BY, Ng IO, Hu MY, Che CM, Fan ST (2006) Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics 6:1049–1057en_US
dc.relation.referencesdoi: 10.1002/pmic.200500306en_US
dc.relation.referencesSun S, Poon RT, Lee NP, Yeung C, Chan KL, Ng IO, Day PJ, Luk JM (2010) Proteomics of hepatocellular carcinoma: serum vimentin as a surrogate marker for small tumors (< or = 2 cm). J Proteome Res 9:1923–1930en_US
dc.relation.referencesdoi: 10.1021/pr901085zen_US
dc.relation.referencesSun S, Xu MZ, Poon RT, Day PJ, Luk JM (2010) Circulating Lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J Proteome Res 9:70–78en_US
dc.relation.referencesdoi: 10.1021/pr9002118en_US
dc.relation.referencesHirose Y, Berger MS, Pieper RO (2001) p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer Res 61:1957–1963en_US
dc.relation.referencesEsteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59:793–797en_US
dc.relation.referencesMaxwell JA, Johnson SP, McLendon RE, Lister DW, Horne KS, Rasheed A, Quinn JA, Ali-Osman F, Friedman AH, Modrich PL, Bigner DD, Friedman HS (2008) Mismatch repair deficiency does not mediate clinical resistance to temozolomide in malignant glioma. Clin Cancer Res 14:4859–4868en_US
dc.relation.referencesdoi: 10.1158/1078-0432.CCR-07-4807en_US
dc.relation.referencesAugustine CK, Yoo JS, Potti A, Yoshimoto Y, Zipfel PA, Friedman HS, Nevins JR, Ali-Osman F, Tyler DS (2009) Genomic and molecular profiling predicts response to temozolomide in melanoma. Clin Cancer Res 15:502–510en_US
dc.relation.referencesdoi: 10.1158/1078-0432.CCR-08-1916en_US
dc.relation.referencesHirose Y, Katayama M, Mirzoeva OK, Berger MS, Pieper RO (2005) Akt activation suppresses Chk2-mediated, methylating agent-induced G2 arrest and protects from temozolomide-induced mitotic catastrophe and cellular senescence. Cancer Res 65:4861–4869en_US
dc.relation.referencesdoi: 10.1158/0008-5472.CAN-04-2633en_US
dc.relation.referencesKohmo S, Kijima T, Otani Y, Mori M, Minami T, Takahashi R, Nagatomo I, Takeda Y, Kida H, Goya S, Yoshida M, Kumagai T, Tachibana I, Yokota S, Kawase I (2010) Cell surface tetraspanin CD9 mediates chemoresistance in small cell lung cancer. Cancer Res 70:8025–8035en_US
dc.relation.referencesdoi: 10.1158/0008-5472.CAN-10-0996en_US
dc.relation.referencesHirose Y, Berger MS, Pieper RO (2001) Abrogation of the Chk1-mediated G(2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res 61:5843–5849en_US
dc.relation.referencesCazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E (2010) Multiple roles of the cell cycle inhibitor p21 (CDKN1A) in the DNA damage response. Mutat Res 704:12–20en_US
dc.relation.referencesdoi: 10.1016/j.mrrev.2010.01.009en_US
dc.relation.referencesChaudhary KS, Abel PD, Stamp GW, Lalani E (2001) Differential expression of cell death regulators in response to thapsigargin and adriamycin in Bcl-2 transfected DU145 prostatic cancer cells. J Pathol 193:522–529en_US
dc.relation.referencesdoi: 10.1002/1096-9896(2000)9999:9999%3C::AID-PATH821%3E3.0.CO;2-Yen_US
dc.relation.referencesMcInroy L, Maatta A (2007) Down-regulation of vimentin expression inhibits carcinoma cell migration and adhesion. Biochem Biophys Res Commun 360:109–114en_US
dc.relation.referencesdoi: 10.1016/j.bbrc.2007.06.036en_US
dc.relation.referencesTrog D, Yeghiazaryan K, Schild HH, Golubnitschaja O (2008) Up-regulation of vimentin expression in low-density malignant glioma cells as immediate and late effects under irradiation and temozolomide treatment. Amino Acids 34:539–545en_US
dc.relation.referencesdoi: 10.1007/s00726-007-0007-4en_US
dc.relation.referencesBerchem G, Glondu M, Gleizes M, Brouillet JP, Vignon F, Garcia M, Liaudet-Coopman E (2002) Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene 21:5951–5955en_US
dc.relation.referencesdoi: 10.1038/sj.onc.1205745en_US
dc.relation.referencesFukuda ME, Iwadate Y, Machida T, Hiwasa T, Nimura Y, Nagai Y, Takiguchi M, Tanzawa H, Yamaura A, Seki N (2005) Cathepsin D is a potential serum marker for poor prognosis in glioma patients. Cancer Res 65:5190–5194en_US
dc.relation.referencesdoi: 10.1158/0008-5472.CAN-04-4134en_US
dc.relation.referencesSagulenko V, Muth D, Sagulenko E, Paffhausen T, Schwab M, Westermann F (2008) Cathepsin D protects human neuroblastoma cells from doxorubicin-induced cell death. Carcinogenesis 29:1869–1877en_US
dc.relation.referencesdoi: 10.1093/carcin/bgn147en_US
dc.relation.referencesGoplen D, Wang J, Enger PO, Tysnes BB, Terzis AJ, Laerum OD, Bjerkvig R (2006) Protein disulfide isomerase expression is related to the invasive properties of malignant glioma. Cancer Res 66:9895–9902en_US
dc.relation.referencesdoi: 10.1158/0008-5472.CAN-05-4589en_US
dc.relation.referencesCicchillitti L, Della Corte A, Di Michele M, Donati MB, Rotilio D, Scambia G (2010) Characterisation of a multimeric protein complex associated with ERp57 within the nucleus in paclitaxel-sensitive and -resistant epithelial ovarian cancer cells: the involvement of specific conformational states of beta-actin. Int J Oncol 37:445–454en_US
dc.relation.referencesdoi: 10.3892/ijo_00000693en_US
dc.relation.referencesFu Y, Li J, Lee AS (2007) GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 67:3734–3740en_US
dc.relation.referencesdoi: 10.1158/0008-5472.CAN-06-4594en_US
dc.relation.referencesBulankina AV, Deggerich A, Wenzel D, Mutenda K, Wittmann JG, Rudolph MG, Burger KN, Honing S (2009) TIP47 functions in the biogenesis of lipid droplets. J Cell Biol 185:641–655en_US
dc.relation.referencesdoi: 10.1083/jcb.200812042en_US
dc.relation.referencesHocsak E, Racz B, Szabo A, Mester L, Rapolti E, Pozsgai E, Javor S, Bellyei S, Gallyas F Jr, Sumegi B, Szigeti A (2010) TIP47 protects mitochondrial membrane integrity and inhibits oxidative-stress-induced cell death. FEBS Lett 584:2953–2960en_US
dc.relation.referencesdoi: 10.1016/j.febslet.2010.05.027en_US
dc.relation.referencesHocsak E, Racz B, Szabo A, Pozsgai E, Szigeti A, Szigeti E, Gallyas F Jr, Sumegi B, Javor S, Bellyei S (2010) TIP47 confers resistance to taxol-induced cell death by preventing the nuclear translocation of AIF and endonuclease G. Eur J Cell Biol 89:853–861en_US
dc.relation.referencesdoi: 10.1016/j.ejcb.2010.06.010en_US
dc.relation.referencesHeiska L, Carpen O (2005) Src phosphorylates ezrin at tyrosine 477 and induces a phosphospecific association between ezrin and a kelch-repeat protein family member. J Biol Chem 280:10244–10252en_US
dc.relation.referencesdoi: 10.1074/jbc.M411353200en_US
dc.relation.referencesDi Cristofano C, Leopizzi M, Miraglia A, Sardella B, Moretti V, Ferrara A, Petrozza V, Della Rocca C (2010) Phosphorylated ezrin is located in the nucleus of the osteosarcoma cell. Mod Pathol 23:1012–1020en_US
dc.relation.referencesdoi: 10.1038/modpathol.2010.77en_US
dc.relation.referencesSun QL, Sha HF, Yang XH, Bao GL, Lu J, Xie YY (2011) Comparative proteomic analysis of paclitaxel sensitive A549 lung adenocarcinoma cell line and its resistant counterpart A549-Taxol. J Cancer Res Clin Oncol 137:521–532en_US
dc.relation.referencesdoi: 10.1007/s00432-010-0913-9en_US
dc.relation.referencesHart MG, Grant R, Garside R, Rogers G, Somerville M, Stein K (2008) Temozolomide for high grade glioma. Cochrane Database Syst Rev (4):CD007415en_US
dc.identifier.volume107en_HK
dc.identifier.issue1en_HK
dc.identifier.spage89en_HK
dc.identifier.epage100en_HK
dc.identifier.eissn1573-7373en_US
dc.identifier.isiWOS:000300313100010-
dc.description.otherSpringer Open Choice, 21 Feb 2012en_US
dc.identifier.scopusauthoridSun, S=21740136100en_HK
dc.identifier.scopusauthoridWong, TS=7403531328en_HK
dc.identifier.scopusauthoridZhang, XQ=52264807800en_HK
dc.identifier.scopusauthoridPu, JK=35094475800en_HK
dc.identifier.scopusauthoridLee, NP=7402722690en_HK
dc.identifier.scopusauthoridDay, PJ=55234871600en_HK
dc.identifier.scopusauthoridNg, GK=55235756300en_HK
dc.identifier.scopusauthoridLui, WM=7101851125en_HK
dc.identifier.scopusauthoridLeung, GK=55235862400en_HK
dc.identifier.citeulike9884995-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats