File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1021/nl203276y
- Scopus: eid_2-s2.0-84855814595
- PMID: 22145977
- WOS: WOS:000298943100033
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Thermal percolation in stable graphite suspensions
Title | Thermal percolation in stable graphite suspensions | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors | |||||||||||||||
Keywords | Thermal Percolation Graphite Suspension | ||||||||||||||
Issue Date | 2012 | ||||||||||||||
Publisher | American Chemical Society. The Journal's web site is located at http://pubs.acs.org/nanolett | ||||||||||||||
Citation | Nano Letters, 2012, v. 12 n. 1, p. 188-192 How to Cite? | ||||||||||||||
Abstract | Different from the electrical conductivity of conductive composites, the thermal conductivity usually does not have distinctive percolation characteristics. Here we report that graphite suspensions show distinct behavior in the thermal conductivity at the electrical percolation threshold, including a sharp kink at the percolation threshold, below which thermal conductivity increases rapidly while above which the rate of increase is smaller, contrary to the electrical percolation behavior. Based on microstructural and alternating current impedance spectroscopy studies, we interpret this behavior as a result of the change of interaction forces between graphite flakes when isolated clusters of graphite flakes form percolated structures. Our results shed light on the thermal conductivity enhancement mechanisms in nanofluids and have potential applications in energy systems. | ||||||||||||||
Persistent Identifier | http://hdl.handle.net/10722/144762 | ||||||||||||||
ISSN | 2023 Impact Factor: 9.6 2023 SCImago Journal Rankings: 3.411 | ||||||||||||||
ISI Accession Number ID |
Funding Information: The authors thank Dr. Shuo Chen for help in HRTEM characterization and Professor Yang Shao-Horn and Mr. Ethan Crumlin for the help in the AC impedance spectroscopy studies. This work is supported in part by MIT-Ford Alliance (J.W.G.), NSF grant no. CBET-0755825 (R.T.Z.), and AFOSR grant no. FA9550-11-1-0174 (J.J.W). R.T.Z. and J.W.G. also gratefully acknowledges partial financial support from China Scholarship Council, Fundamental Research Funds for the Central Universities, and the Program for New Century Excellent Talents in University (NCET). |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zheng, R | - |
dc.contributor.author | Gao, J | - |
dc.contributor.author | Wang, JJ | - |
dc.contributor.author | Feng, SP | - |
dc.contributor.author | Ohtani, H | - |
dc.contributor.author | Wang, JB | - |
dc.contributor.author | Chen, G | - |
dc.date.accessioned | 2012-02-03T08:25:29Z | - |
dc.date.available | 2012-02-03T08:25:29Z | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | Nano Letters, 2012, v. 12 n. 1, p. 188-192 | - |
dc.identifier.issn | 1530-6984 | - |
dc.identifier.uri | http://hdl.handle.net/10722/144762 | - |
dc.description.abstract | Different from the electrical conductivity of conductive composites, the thermal conductivity usually does not have distinctive percolation characteristics. Here we report that graphite suspensions show distinct behavior in the thermal conductivity at the electrical percolation threshold, including a sharp kink at the percolation threshold, below which thermal conductivity increases rapidly while above which the rate of increase is smaller, contrary to the electrical percolation behavior. Based on microstructural and alternating current impedance spectroscopy studies, we interpret this behavior as a result of the change of interaction forces between graphite flakes when isolated clusters of graphite flakes form percolated structures. Our results shed light on the thermal conductivity enhancement mechanisms in nanofluids and have potential applications in energy systems. | - |
dc.language | eng | - |
dc.publisher | American Chemical Society. The Journal's web site is located at http://pubs.acs.org/nanolett | - |
dc.relation.ispartof | Nano Letters | - |
dc.subject | Thermal | - |
dc.subject | Percolation | - |
dc.subject | Graphite | - |
dc.subject | Suspension | - |
dc.subject.mesh | Graphite - chemistry | - |
dc.subject.mesh | Materials Testing | - |
dc.subject.mesh | Nanostructures - chemistry - ultrastructure | - |
dc.subject.mesh | Particle Size | - |
dc.subject.mesh | Suspensions - chemistry | - |
dc.subject.mesh | Temperature | - |
dc.subject.mesh | Thermal Conductivity | - |
dc.title | Thermal percolation in stable graphite suspensions | en_US |
dc.type | Article | en_US |
dc.identifier.email | Feng, TSP: hpfeng@hku.hk | - |
dc.description.nature | link_to_OA_fulltext | - |
dc.identifier.doi | 10.1021/nl203276y | - |
dc.identifier.pmid | 22145977 | - |
dc.identifier.scopus | eid_2-s2.0-84855814595 | - |
dc.identifier.hkuros | 205054 | - |
dc.identifier.volume | 12 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 188 | - |
dc.identifier.epage | 192 | - |
dc.identifier.eissn | 1530-6992 | - |
dc.identifier.isi | WOS:000298943100033 | - |
dc.publisher.place | United States | - |
dc.customcontrol.immutable | sml 130426 | - |
dc.identifier.issnl | 1530-6984 | - |