File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Thermal percolation in stable graphite suspensions
  • Basic View
  • Metadata View
  • XML View
TitleThermal percolation in stable graphite suspensions
 
AuthorsZheng, R1 2
Gao, J1 3
Wang, JJ
Feng, SP1 4
Ohtani, H6
Wang, JB
Chen, G1
 
KeywordsThermal
Percolation
Graphite
Suspension
 
Issue Date2012
 
PublisherAmerican Chemical Society. The Journal's web site is located at http://pubs.acs.org/nanolett
 
CitationNano Letters, 2012, v. 12 n. 1, p. 188-192 [How to Cite?]
DOI: http://dx.doi.org/10.1021/nl203276y
 
AbstractDifferent from the electrical conductivity of conductive composites, the thermal conductivity usually does not have distinctive percolation characteristics. Here we report that graphite suspensions show distinct behavior in the thermal conductivity at the electrical percolation threshold, including a sharp kink at the percolation threshold, below which thermal conductivity increases rapidly while above which the rate of increase is smaller, contrary to the electrical percolation behavior. Based on microstructural and alternating current impedance spectroscopy studies, we interpret this behavior as a result of the change of interaction forces between graphite flakes when isolated clusters of graphite flakes form percolated structures. Our results shed light on the thermal conductivity enhancement mechanisms in nanofluids and have potential applications in energy systems.
 
ISSN1530-6984
2012 Impact Factor: 13.025
2012 SCImago Journal Rankings: 8.647
 
DOIhttp://dx.doi.org/10.1021/nl203276y
 
ISI Accession Number IDWOS:000298943100033
Funding AgencyGrant Number
MIT-Ford Alliance
NSFCBET-0755825
AFOSRFA9550-11-1-0174
China Scholarship Council
Fundamental Research Funds for the Central Universities
Program for New Century Excellent Talents in University (NCET)
Funding Information:

The authors thank Dr. Shuo Chen for help in HRTEM characterization and Professor Yang Shao-Horn and Mr. Ethan Crumlin for the help in the AC impedance spectroscopy studies. This work is supported in part by MIT-Ford Alliance (J.W.G.), NSF grant no. CBET-0755825 (R.T.Z.), and AFOSR grant no. FA9550-11-1-0174 (J.J.W). R.T.Z. and J.W.G. also gratefully acknowledges partial financial support from China Scholarship Council, Fundamental Research Funds for the Central Universities, and the Program for New Century Excellent Talents in University (NCET).

 
DC FieldValue
dc.contributor.authorZheng, R
 
dc.contributor.authorGao, J
 
dc.contributor.authorWang, JJ
 
dc.contributor.authorFeng, SP
 
dc.contributor.authorOhtani, H
 
dc.contributor.authorWang, JB
 
dc.contributor.authorChen, G
 
dc.date.accessioned2012-02-03T08:25:29Z
 
dc.date.available2012-02-03T08:25:29Z
 
dc.date.issued2012
 
dc.description.abstractDifferent from the electrical conductivity of conductive composites, the thermal conductivity usually does not have distinctive percolation characteristics. Here we report that graphite suspensions show distinct behavior in the thermal conductivity at the electrical percolation threshold, including a sharp kink at the percolation threshold, below which thermal conductivity increases rapidly while above which the rate of increase is smaller, contrary to the electrical percolation behavior. Based on microstructural and alternating current impedance spectroscopy studies, we interpret this behavior as a result of the change of interaction forces between graphite flakes when isolated clusters of graphite flakes form percolated structures. Our results shed light on the thermal conductivity enhancement mechanisms in nanofluids and have potential applications in energy systems.
 
dc.description.naturelink_to_OA_fulltext
 
dc.identifier.citationNano Letters, 2012, v. 12 n. 1, p. 188-192 [How to Cite?]
DOI: http://dx.doi.org/10.1021/nl203276y
 
dc.identifier.doihttp://dx.doi.org/10.1021/nl203276y
 
dc.identifier.eissn1530-6992
 
dc.identifier.epage192
 
dc.identifier.hkuros205054
 
dc.identifier.isiWOS:000298943100033
Funding AgencyGrant Number
MIT-Ford Alliance
NSFCBET-0755825
AFOSRFA9550-11-1-0174
China Scholarship Council
Fundamental Research Funds for the Central Universities
Program for New Century Excellent Talents in University (NCET)
Funding Information:

The authors thank Dr. Shuo Chen for help in HRTEM characterization and Professor Yang Shao-Horn and Mr. Ethan Crumlin for the help in the AC impedance spectroscopy studies. This work is supported in part by MIT-Ford Alliance (J.W.G.), NSF grant no. CBET-0755825 (R.T.Z.), and AFOSR grant no. FA9550-11-1-0174 (J.J.W). R.T.Z. and J.W.G. also gratefully acknowledges partial financial support from China Scholarship Council, Fundamental Research Funds for the Central Universities, and the Program for New Century Excellent Talents in University (NCET).

 
dc.identifier.issn1530-6984
2012 Impact Factor: 13.025
2012 SCImago Journal Rankings: 8.647
 
dc.identifier.issue1
 
dc.identifier.pmid22145977
 
dc.identifier.scopuseid_2-s2.0-84855814595
 
dc.identifier.spage188
 
dc.identifier.urihttp://hdl.handle.net/10722/144762
 
dc.identifier.volume12
 
dc.languageeng
 
dc.publisherAmerican Chemical Society. The Journal's web site is located at http://pubs.acs.org/nanolett
 
dc.publisher.placeUnited States
 
dc.relation.ispartofNano Letters
 
dc.subject.meshGraphite - chemistry
 
dc.subject.meshMaterials Testing
 
dc.subject.meshNanostructures - chemistry - ultrastructure
 
dc.subject.meshParticle Size
 
dc.subject.meshSuspensions - chemistry
 
dc.subject.meshTemperature
 
dc.subject.meshThermal Conductivity
 
dc.subjectThermal
 
dc.subjectPercolation
 
dc.subjectGraphite
 
dc.subjectSuspension
 
dc.titleThermal percolation in stable graphite suspensions
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Zheng, R</contributor.author>
<contributor.author>Gao, J</contributor.author>
<contributor.author>Wang, JJ</contributor.author>
<contributor.author>Feng, SP</contributor.author>
<contributor.author>Ohtani, H</contributor.author>
<contributor.author>Wang, JB</contributor.author>
<contributor.author>Chen, G</contributor.author>
<date.accessioned>2012-02-03T08:25:29Z</date.accessioned>
<date.available>2012-02-03T08:25:29Z</date.available>
<date.issued>2012</date.issued>
<identifier.citation>Nano Letters, 2012, v. 12 n. 1, p. 188-192</identifier.citation>
<identifier.issn>1530-6984</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/144762</identifier.uri>
<description.abstract>Different from the electrical conductivity of conductive composites, the thermal conductivity usually does not have distinctive percolation characteristics. Here we report that graphite suspensions show distinct behavior in the thermal conductivity at the electrical percolation threshold, including a sharp kink at the percolation threshold, below which thermal conductivity increases rapidly while above which the rate of increase is smaller, contrary to the electrical percolation behavior. Based on microstructural and alternating current impedance spectroscopy studies, we interpret this behavior as a result of the change of interaction forces between graphite flakes when isolated clusters of graphite flakes form percolated structures. Our results shed light on the thermal conductivity enhancement mechanisms in nanofluids and have potential applications in energy systems.</description.abstract>
<language>eng</language>
<publisher>American Chemical Society. The Journal&apos;s web site is located at http://pubs.acs.org/nanolett</publisher>
<relation.ispartof>Nano Letters</relation.ispartof>
<subject>Thermal</subject>
<subject>Percolation</subject>
<subject>Graphite</subject>
<subject>Suspension</subject>
<subject.mesh>Graphite - chemistry</subject.mesh>
<subject.mesh>Materials Testing</subject.mesh>
<subject.mesh>Nanostructures - chemistry - ultrastructure</subject.mesh>
<subject.mesh>Particle Size</subject.mesh>
<subject.mesh>Suspensions - chemistry</subject.mesh>
<subject.mesh>Temperature</subject.mesh>
<subject.mesh>Thermal Conductivity</subject.mesh>
<title>Thermal percolation in stable graphite suspensions</title>
<type>Article</type>
<description.nature>link_to_OA_fulltext</description.nature>
<identifier.doi>10.1021/nl203276y</identifier.doi>
<identifier.pmid>22145977</identifier.pmid>
<identifier.scopus>eid_2-s2.0-84855814595</identifier.scopus>
<identifier.hkuros>205054</identifier.hkuros>
<identifier.volume>12</identifier.volume>
<identifier.issue>1</identifier.issue>
<identifier.spage>188</identifier.spage>
<identifier.epage>192</identifier.epage>
<identifier.eissn>1530-6992</identifier.eissn>
<identifier.isi>WOS:000298943100033</identifier.isi>
<publisher.place>United States</publisher.place>
<bitstream.url>http://hub.hku.hk/bitstream/10722/144762/2/re01.htm</bitstream.url>
</item>
Author Affiliations
  1. Massachusetts Institute of Technology
  2. Beijing Normal University
  3. South China Normal University
  4. The University of Hong Kong
  5. Huazhong University of Science and Technology
  6. Ford Motor