File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Optimal selection strategies for QTL mapping using pooled DNA samples
  • Basic View
  • Metadata View
  • XML View
TitleOptimal selection strategies for QTL mapping using pooled DNA samples
 
AuthorsJawaid, A1
Bader, JS1
Purcell, S1
Cherny, SS1
Sham, P1
 
KeywordsDNA pooling
Experimental errors
QTL association analyses
Sample selection
SNPs
 
Issue Date2002
 
PublisherNature Publishing Group. The Journal's web site is located at http://www.nature.com/ejhg
 
CitationEuropean Journal Of Human Genetics, 2002, v. 10 n. 2, p. 125-132 [How to Cite?]
DOI: http://dx.doi.org/10.1038/sj/ejhg/5200771
 
AbstractThe cost of large-scale association studies may be reduced substantially by analysis of pooled DNA from multiple individuals. Here we examine the optimal symmetric and asymmetric designs for pooling experiments for quantitative traits under a range of assumptions about the underlying genetic model and the sources of experimental errors in allele frequency estimation. The results indicate that, in the absence of experimental errors and for common alleles with additive effects, a symmetric pooling scheme comparing the top 27% with the bottom 27% of the trait distribution is optimal, extracting 80% the total information available. A symmetric design is not optimal for rare or recessive alleles, which require asymmetric (or other) pooling strategies. Allele frequency measurement errors reduce the optimal pooling fraction as well as the overall efficiency of the pooling design. In contrast, random variation in the amount of DNA contributed by individuals to a pool reduces only the overall efficiency of the pooling design. Our results emphasize the importance of minimising experimental errors and suggest a pooling fraction of around 20%.
 
ISSN1018-4813
2013 Impact Factor: 4.225
2013 SCImago Journal Rankings: 1.909
 
DOIhttp://dx.doi.org/10.1038/sj/ejhg/5200771
 
ISI Accession Number IDWOS:000174997000007
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorJawaid, A
 
dc.contributor.authorBader, JS
 
dc.contributor.authorPurcell, S
 
dc.contributor.authorCherny, SS
 
dc.contributor.authorSham, P
 
dc.date.accessioned2011-12-16T08:09:08Z
 
dc.date.available2011-12-16T08:09:08Z
 
dc.date.issued2002
 
dc.description.abstractThe cost of large-scale association studies may be reduced substantially by analysis of pooled DNA from multiple individuals. Here we examine the optimal symmetric and asymmetric designs for pooling experiments for quantitative traits under a range of assumptions about the underlying genetic model and the sources of experimental errors in allele frequency estimation. The results indicate that, in the absence of experimental errors and for common alleles with additive effects, a symmetric pooling scheme comparing the top 27% with the bottom 27% of the trait distribution is optimal, extracting 80% the total information available. A symmetric design is not optimal for rare or recessive alleles, which require asymmetric (or other) pooling strategies. Allele frequency measurement errors reduce the optimal pooling fraction as well as the overall efficiency of the pooling design. In contrast, random variation in the amount of DNA contributed by individuals to a pool reduces only the overall efficiency of the pooling design. Our results emphasize the importance of minimising experimental errors and suggest a pooling fraction of around 20%.
 
dc.description.naturelink_to_subscribed_fulltext
 
dc.identifier.citationEuropean Journal Of Human Genetics, 2002, v. 10 n. 2, p. 125-132 [How to Cite?]
DOI: http://dx.doi.org/10.1038/sj/ejhg/5200771
 
dc.identifier.doihttp://dx.doi.org/10.1038/sj/ejhg/5200771
 
dc.identifier.epage132
 
dc.identifier.isiWOS:000174997000007
 
dc.identifier.issn1018-4813
2013 Impact Factor: 4.225
2013 SCImago Journal Rankings: 1.909
 
dc.identifier.issue2
 
dc.identifier.pmid11938443
 
dc.identifier.scopuseid_2-s2.0-0036225328
 
dc.identifier.spage125
 
dc.identifier.urihttp://hdl.handle.net/10722/143659
 
dc.identifier.volume10
 
dc.publisherNature Publishing Group. The Journal's web site is located at http://www.nature.com/ejhg
 
dc.publisher.placeUnited Kingdom
 
dc.relation.ispartofEuropean Journal of Human Genetics
 
dc.relation.referencesReferences in Scopus
 
dc.subject.meshAnalysis of Variance
 
dc.subject.meshAnimals
 
dc.subject.meshCase-Control Studies
 
dc.subject.meshChromosome Mapping - statistics & numerical data
 
dc.subject.meshGene Frequency
 
dc.subject.meshHumans
 
dc.subject.meshModels, Genetic
 
dc.subject.meshQuantitative Trait, Heritable
 
dc.subjectDNA pooling
 
dc.subjectExperimental errors
 
dc.subjectQTL association analyses
 
dc.subjectSample selection
 
dc.subjectSNPs
 
dc.titleOptimal selection strategies for QTL mapping using pooled DNA samples
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Jawaid, A</contributor.author>
<contributor.author>Bader, JS</contributor.author>
<contributor.author>Purcell, S</contributor.author>
<contributor.author>Cherny, SS</contributor.author>
<contributor.author>Sham, P</contributor.author>
<date.accessioned>2011-12-16T08:09:08Z</date.accessioned>
<date.available>2011-12-16T08:09:08Z</date.available>
<date.issued>2002</date.issued>
<identifier.citation>European Journal Of Human Genetics, 2002, v. 10 n. 2, p. 125-132</identifier.citation>
<identifier.issn>1018-4813</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/143659</identifier.uri>
<description.abstract>The cost of large-scale association studies may be reduced substantially by analysis of pooled DNA from multiple individuals. Here we examine the optimal symmetric and asymmetric designs for pooling experiments for quantitative traits under a range of assumptions about the underlying genetic model and the sources of experimental errors in allele frequency estimation. The results indicate that, in the absence of experimental errors and for common alleles with additive effects, a symmetric pooling scheme comparing the top 27% with the bottom 27% of the trait distribution is optimal, extracting 80% the total information available. A symmetric design is not optimal for rare or recessive alleles, which require asymmetric (or other) pooling strategies. Allele frequency measurement errors reduce the optimal pooling fraction as well as the overall efficiency of the pooling design. In contrast, random variation in the amount of DNA contributed by individuals to a pool reduces only the overall efficiency of the pooling design. Our results emphasize the importance of minimising experimental errors and suggest a pooling fraction of around 20%.</description.abstract>
<publisher>Nature Publishing Group. The Journal&apos;s web site is located at http://www.nature.com/ejhg</publisher>
<relation.ispartof>European Journal of Human Genetics</relation.ispartof>
<subject>DNA pooling</subject>
<subject>Experimental errors</subject>
<subject>QTL association analyses</subject>
<subject>Sample selection</subject>
<subject>SNPs</subject>
<subject.mesh>Analysis of Variance</subject.mesh>
<subject.mesh>Animals</subject.mesh>
<subject.mesh>Case-Control Studies</subject.mesh>
<subject.mesh>Chromosome Mapping - statistics &amp; numerical data</subject.mesh>
<subject.mesh>Gene Frequency</subject.mesh>
<subject.mesh>Humans</subject.mesh>
<subject.mesh>Models, Genetic</subject.mesh>
<subject.mesh>Quantitative Trait, Heritable</subject.mesh>
<title>Optimal selection strategies for QTL mapping using pooled DNA samples</title>
<type>Article</type>
<description.nature>link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1038/sj/ejhg/5200771</identifier.doi>
<identifier.pmid>11938443</identifier.pmid>
<identifier.scopus>eid_2-s2.0-0036225328</identifier.scopus>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-0036225328&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>10</identifier.volume>
<identifier.issue>2</identifier.issue>
<identifier.spage>125</identifier.spage>
<identifier.epage>132</identifier.epage>
<identifier.isi>WOS:000174997000007</identifier.isi>
<publisher.place>United Kingdom</publisher.place>
</item>
Author Affiliations
  1. King's College London