File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Coefficients of symmetric square L-functions

TitleCoefficients of symmetric square L-functions
Authors
Keywordsℬ-free numbers
Fourier coefficients of modular forms
Issue Date2010
PublisherScience China Press, co-published with Springer. The Journal's web site is located at http://math.scichina.com/english/
Citation
Science China Mathematics, 2010, v. 53 n. 9, p. 2317-2328 How to Cite?
AbstractLet λsym2f(n) be the n-th coefficient in the Dirichlet series of the symmetric square L-function associated with a holomorphic primitive cusp form f. We prove Ω± results for λsym2f(n) and evaluate the number of positive (resp., negative) λsym2f(n) in some intervals. © 2010 Science China Press and Springer-Verlag Berlin Heidelberg.
Persistent Identifierhttp://hdl.handle.net/10722/142366
ISSN
2015 Impact Factor: 0.761
2015 SCImago Journal Rankings: 0.894
ISI Accession Number ID
Funding AgencyGrant Number
James D. Wolfensohn Fund
S. S. Chern Fund
Minerva Research Foundation
National Natural Science Foundation of China10531060
Funding Information:

Part of this work was done when the first and third authors visited the School of Mathematics at Shandong University in the summer of 2009. This was finished during the visit of the first author at l'Institut Elie Cartan de l'Universite Henri Poincare (Nancy 1) in the winter of 2009, as well as during the visit of second author at the Institute for Advanced Study, Princeton, in the academic year 2009-2010. The second author is grateful to the James D. Wolfensohn Fund, the S. S. Chern Fund, the Minerva Research Foundation, and also National Natural Science Foundation of China (Grant No. 10531060) for their supports during the academic year. It is a pleasure to record our thanks to these three institutions for hospitality.

References

 

DC FieldValueLanguage
dc.contributor.authorLau, YKen_HK
dc.contributor.authorLiu, JYen_HK
dc.contributor.authorWu, Jen_HK
dc.date.accessioned2011-10-28T02:44:18Z-
dc.date.available2011-10-28T02:44:18Z-
dc.date.issued2010en_HK
dc.identifier.citationScience China Mathematics, 2010, v. 53 n. 9, p. 2317-2328en_HK
dc.identifier.issn1674-7283en_HK
dc.identifier.urihttp://hdl.handle.net/10722/142366-
dc.description.abstractLet λsym2f(n) be the n-th coefficient in the Dirichlet series of the symmetric square L-function associated with a holomorphic primitive cusp form f. We prove Ω± results for λsym2f(n) and evaluate the number of positive (resp., negative) λsym2f(n) in some intervals. © 2010 Science China Press and Springer-Verlag Berlin Heidelberg.en_HK
dc.languageengen_US
dc.publisherScience China Press, co-published with Springer. The Journal's web site is located at http://math.scichina.com/english/en_HK
dc.relation.ispartofScience China Mathematicsen_HK
dc.subjectℬ-free numbersen_HK
dc.subjectFourier coefficients of modular formsen_HK
dc.titleCoefficients of symmetric square L-functionsen_HK
dc.typeArticleen_HK
dc.identifier.emailLau, YK:yklau@maths.hku.hken_HK
dc.identifier.authorityLau, YK=rp00722en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1007/s11425-010-4046-zen_HK
dc.identifier.scopuseid_2-s2.0-77956464046en_HK
dc.identifier.hkuros184573en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-77956464046&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume53en_HK
dc.identifier.issue9en_HK
dc.identifier.spage2317en_HK
dc.identifier.epage2328en_HK
dc.identifier.isiWOS:000281670200010-
dc.publisher.placeChinaen_HK
dc.identifier.scopusauthoridLau, YK=35724053400en_HK
dc.identifier.scopusauthoridLiu, JY=7410107044en_HK
dc.identifier.scopusauthoridWu, J=7409256406en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats