File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging
  • Basic View
  • Metadata View
  • XML View
TitleIn vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging
 
AuthorsChan, KC1 1
Li, J1
Kau, P1
Zhou, IY1 1
Cheung, MM1 1
Lau, C1 1
Yang, J1 1
So, KF1
Wu, EX1 1 1
 
KeywordsAnterograde axonal transport
Intraorbital optic nerve
Manganese-enhanced MRI
Partial transection
Retinotopic mapping
Superior colliculus
 
Issue Date2011
 
PublisherAcademic Press. The Journal's web site is located at http://www.elsevier.com/locate/ynimg
 
CitationNeuroimage, 2011, v. 54 n. 1, p. 389-395 [How to Cite?]
DOI: http://dx.doi.org/10.1016/j.neuroimage.2010.07.015
 
AbstractThe superior colliculus (SC) is a dome-shaped subcortical laminar structure in the mammalian midbrain, whose superficial layers receive visual information from the retina in a topological order. Despite the increasing number of studies investigating retinotopic projection in visual brain development and disorders, in vivo, high-resolution 3D mapping of topographic organization in the subcortical visual nuclei has not yet been available. This study explores the capability of 3D manganese-enhanced MRI (MEMRI) at 200μm isotropic resolution for in vivo retinotopic mapping of the rat SC upon partial transection of the intraorbital optic nerve. One day after intravitreal Mn 2+ injection into both eyes, animals with partial transection at the right superior intraorbital optic nerve in Group 1 (n=8) exhibited a significantly lower T1-weighted signal intensity in the lateral region of the left SC compared to the left medial SC and right control SC. Partial transection toward the temporal or nasal region of the right intraorbital optic nerve in Group 2 (n=7) led to T1-weighted hypointensity in the rostral or caudal region of the left SC, whereas a clear border was observed separating 2 halves of the left SC in all groups. Previous histological and electrophysiological studies showed that the retinal ganglion cell axons emanating from superior, inferior, nasal and temporal retina projected respectively to the contralateral lateral, medial, caudal and rostral SC in rodents. While this topological pattern is preserved in the intraorbital optic nerve, it was shown that partial transection of the superior intraorbital optic nerve led to primary injury predominantly in the superior but not inferior retina and optic nerve. The results of this study demonstrated the sensitivity of submillimeter-resolution MEMRI for in vivo, 3D mapping of the precise retinotopic projections in SC upon reduced anterograde axonal transport of Mn 2+ ions from localized regions of the anterior visual pathways to the subcortical midbrain nuclei. Future MEMRI studies are envisioned that measure the topographic changes in brain development, diseases, plasticity and regeneration therapies in a global and longitudinal setting. © 2010 Elsevier Inc.
 
ISSN1053-8119
2012 Impact Factor: 6.252
2012 SCImago Journal Rankings: 3.164
 
DOIhttp://dx.doi.org/10.1016/j.neuroimage.2010.07.015
 
ISI Accession Number IDWOS:000283825000041
Funding AgencyGrant Number
Hong Kong Research Grant CouncilGRF HKU 7793/08 M
GRF HKU 7808/09 M
Funding Information:

This work was supported by the Hong Kong Research Grant Council (GRF HKU 7793/08 M and GRF HKU 7808/09 M).

 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorChan, KC
 
dc.contributor.authorLi, J
 
dc.contributor.authorKau, P
 
dc.contributor.authorZhou, IY
 
dc.contributor.authorCheung, MM
 
dc.contributor.authorLau, C
 
dc.contributor.authorYang, J
 
dc.contributor.authorSo, KF
 
dc.contributor.authorWu, EX
 
dc.date.accessioned2011-10-28T02:42:43Z
 
dc.date.available2011-10-28T02:42:43Z
 
dc.date.issued2011
 
dc.description.abstractThe superior colliculus (SC) is a dome-shaped subcortical laminar structure in the mammalian midbrain, whose superficial layers receive visual information from the retina in a topological order. Despite the increasing number of studies investigating retinotopic projection in visual brain development and disorders, in vivo, high-resolution 3D mapping of topographic organization in the subcortical visual nuclei has not yet been available. This study explores the capability of 3D manganese-enhanced MRI (MEMRI) at 200μm isotropic resolution for in vivo retinotopic mapping of the rat SC upon partial transection of the intraorbital optic nerve. One day after intravitreal Mn 2+ injection into both eyes, animals with partial transection at the right superior intraorbital optic nerve in Group 1 (n=8) exhibited a significantly lower T1-weighted signal intensity in the lateral region of the left SC compared to the left medial SC and right control SC. Partial transection toward the temporal or nasal region of the right intraorbital optic nerve in Group 2 (n=7) led to T1-weighted hypointensity in the rostral or caudal region of the left SC, whereas a clear border was observed separating 2 halves of the left SC in all groups. Previous histological and electrophysiological studies showed that the retinal ganglion cell axons emanating from superior, inferior, nasal and temporal retina projected respectively to the contralateral lateral, medial, caudal and rostral SC in rodents. While this topological pattern is preserved in the intraorbital optic nerve, it was shown that partial transection of the superior intraorbital optic nerve led to primary injury predominantly in the superior but not inferior retina and optic nerve. The results of this study demonstrated the sensitivity of submillimeter-resolution MEMRI for in vivo, 3D mapping of the precise retinotopic projections in SC upon reduced anterograde axonal transport of Mn 2+ ions from localized regions of the anterior visual pathways to the subcortical midbrain nuclei. Future MEMRI studies are envisioned that measure the topographic changes in brain development, diseases, plasticity and regeneration therapies in a global and longitudinal setting. © 2010 Elsevier Inc.
 
dc.description.natureLink_to_subscribed_fulltext
 
dc.identifier.citationNeuroimage, 2011, v. 54 n. 1, p. 389-395 [How to Cite?]
DOI: http://dx.doi.org/10.1016/j.neuroimage.2010.07.015
 
dc.identifier.doihttp://dx.doi.org/10.1016/j.neuroimage.2010.07.015
 
dc.identifier.epage395
 
dc.identifier.hkuros184649
 
dc.identifier.isiWOS:000283825000041
Funding AgencyGrant Number
Hong Kong Research Grant CouncilGRF HKU 7793/08 M
GRF HKU 7808/09 M
Funding Information:

This work was supported by the Hong Kong Research Grant Council (GRF HKU 7793/08 M and GRF HKU 7808/09 M).

 
dc.identifier.issn1053-8119
2012 Impact Factor: 6.252
2012 SCImago Journal Rankings: 3.164
 
dc.identifier.issue1
 
dc.identifier.openurl
 
dc.identifier.pmid20633657
 
dc.identifier.scopuseid_2-s2.0-77957939969
 
dc.identifier.spage389
 
dc.identifier.urihttp://hdl.handle.net/10722/142313
 
dc.identifier.volume54
 
dc.languageeng
 
dc.publisherAcademic Press. The Journal's web site is located at http://www.elsevier.com/locate/ynimg
 
dc.publisher.placeUnited States
 
dc.relation.ispartofNeuroImage
 
dc.relation.referencesReferences in Scopus
 
dc.subject.meshBrain Mapping - methods
 
dc.subject.meshMagnetic Resonance Imaging - methods
 
dc.subject.meshManganese - pharmacology
 
dc.subject.meshOptic Nerve - anatomy and histology - physiology
 
dc.subject.meshRetina - drug effects - physiology
 
dc.subjectAnterograde axonal transport
 
dc.subjectIntraorbital optic nerve
 
dc.subjectManganese-enhanced MRI
 
dc.subjectPartial transection
 
dc.subjectRetinotopic mapping
 
dc.subjectSuperior colliculus
 
dc.titleIn vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Chan, KC</contributor.author>
<contributor.author>Li, J</contributor.author>
<contributor.author>Kau, P</contributor.author>
<contributor.author>Zhou, IY</contributor.author>
<contributor.author>Cheung, MM</contributor.author>
<contributor.author>Lau, C</contributor.author>
<contributor.author>Yang, J</contributor.author>
<contributor.author>So, KF</contributor.author>
<contributor.author>Wu, EX</contributor.author>
<date.accessioned>2011-10-28T02:42:43Z</date.accessioned>
<date.available>2011-10-28T02:42:43Z</date.available>
<date.issued>2011</date.issued>
<identifier.citation>Neuroimage, 2011, v. 54 n. 1, p. 389-395</identifier.citation>
<identifier.issn>1053-8119</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/142313</identifier.uri>
<description.abstract>The superior colliculus (SC) is a dome-shaped subcortical laminar structure in the mammalian midbrain, whose superficial layers receive visual information from the retina in a topological order. Despite the increasing number of studies investigating retinotopic projection in visual brain development and disorders, in vivo, high-resolution 3D mapping of topographic organization in the subcortical visual nuclei has not yet been available. This study explores the capability of 3D manganese-enhanced MRI (MEMRI) at 200&#956;m isotropic resolution for in vivo retinotopic mapping of the rat SC upon partial transection of the intraorbital optic nerve. One day after intravitreal Mn 2+ injection into both eyes, animals with partial transection at the right superior intraorbital optic nerve in Group 1 (n=8) exhibited a significantly lower T1-weighted signal intensity in the lateral region of the left SC compared to the left medial SC and right control SC. Partial transection toward the temporal or nasal region of the right intraorbital optic nerve in Group 2 (n=7) led to T1-weighted hypointensity in the rostral or caudal region of the left SC, whereas a clear border was observed separating 2 halves of the left SC in all groups. Previous histological and electrophysiological studies showed that the retinal ganglion cell axons emanating from superior, inferior, nasal and temporal retina projected respectively to the contralateral lateral, medial, caudal and rostral SC in rodents. While this topological pattern is preserved in the intraorbital optic nerve, it was shown that partial transection of the superior intraorbital optic nerve led to primary injury predominantly in the superior but not inferior retina and optic nerve. The results of this study demonstrated the sensitivity of submillimeter-resolution MEMRI for in vivo, 3D mapping of the precise retinotopic projections in SC upon reduced anterograde axonal transport of Mn 2+ ions from localized regions of the anterior visual pathways to the subcortical midbrain nuclei. Future MEMRI studies are envisioned that measure the topographic changes in brain development, diseases, plasticity and regeneration therapies in a global and longitudinal setting. &#169; 2010 Elsevier Inc.</description.abstract>
<language>eng</language>
<publisher>Academic Press. The Journal&apos;s web site is located at http://www.elsevier.com/locate/ynimg</publisher>
<relation.ispartof>NeuroImage</relation.ispartof>
<subject>Anterograde axonal transport</subject>
<subject>Intraorbital optic nerve</subject>
<subject>Manganese-enhanced MRI</subject>
<subject>Partial transection</subject>
<subject>Retinotopic mapping</subject>
<subject>Superior colliculus</subject>
<subject.mesh>Brain Mapping - methods</subject.mesh>
<subject.mesh>Magnetic Resonance Imaging - methods</subject.mesh>
<subject.mesh>Manganese - pharmacology</subject.mesh>
<subject.mesh>Optic Nerve - anatomy and histology - physiology</subject.mesh>
<subject.mesh>Retina - drug effects - physiology</subject.mesh>
<title>In vivo retinotopic mapping of superior colliculus using manganese-enhanced magnetic resonance imaging</title>
<type>Article</type>
<identifier.openurl>http://library.hku.hk:4550/resserv?sid=HKU:IR&amp;issn=1053-8119&amp;volume=54&amp;spage=389&amp;epage=395&amp;date=2011&amp;atitle=In+vivo+retinotopic+mapping+of+superior+colliculus+using+manganese-enhanced+magnetic+resonance+imaging</identifier.openurl>
<description.nature>Link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1016/j.neuroimage.2010.07.015</identifier.doi>
<identifier.pmid>20633657</identifier.pmid>
<identifier.scopus>eid_2-s2.0-77957939969</identifier.scopus>
<identifier.hkuros>184649</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-77957939969&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>54</identifier.volume>
<identifier.issue>1</identifier.issue>
<identifier.spage>389</identifier.spage>
<identifier.epage>395</identifier.epage>
<identifier.isi>WOS:000283825000041</identifier.isi>
<publisher.place>United States</publisher.place>
</item>
Author Affiliations
  1. The University of Hong Kong