File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/ASPDAC.2011.5722240
- Scopus: eid_2-s2.0-79952961899
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Conference Paper: A moment-matching scheme for the passivity-preserving model order reduction of indefinite descriptor systems with possible polynomial parts
Title | A moment-matching scheme for the passivity-preserving model order reduction of indefinite descriptor systems with possible polynomial parts |
---|---|
Authors | |
Keywords | Balanced truncation Descriptor systems Generalized algebraic riccati equations Model order reduction Moment-matching |
Issue Date | 2011 |
Publisher | IEEE. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000194 |
Citation | The 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011), Yokohama, Japan, 25-28 January 2011. In Proceedings of the 16th ASP-DAC, 2011, p. 49-54, paper 1C-1 How to Cite? |
Abstract | Passivity-preserving model order reduction (MOR) of descriptor systems (DSs) is highly desired in the simulation of VLSI interconnects and on-chip passives. One popular method is PRIMA, a Krylov-subspace projection approach which preserves the passivity of positive semidefinite (PSD) structured DSs. However, system passivity is not guaranteed by PRIMA when the system is indefinite. Furthermore, the possible polynomial parts of singular systems are normally not captured. For indefinite DSs, positive-real balanced truncation (PRBT) can generate passive reduced-order models (ROMs), whose main bottleneck lies in solving the dual expensive generalized algebraic Riccati equations (GAREs). This paper presents a novel moment-matching MORfor indefinite DSs, which preserves both the system passivity and, if present, also the improper polynomial part. This method only requires solving one GARE, therefore it is cheaper than existing PRBT schemes. On the other hand, the proposed algorithm is capable of preserving the passivity of indefinite DSs, which is not guaranteed by traditional moment-matching MORs. Examples are finally presented showing that our method is superior to PRIMA in terms of accuracy. ©2011 IEEE. |
Persistent Identifier | http://hdl.handle.net/10722/140206 |
ISBN | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Z | en_HK |
dc.contributor.author | Wang, Q | en_HK |
dc.contributor.author | Wong, N | en_HK |
dc.contributor.author | Daniel, L | en_HK |
dc.date.accessioned | 2011-09-23T06:08:48Z | - |
dc.date.available | 2011-09-23T06:08:48Z | - |
dc.date.issued | 2011 | en_HK |
dc.identifier.citation | The 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011), Yokohama, Japan, 25-28 January 2011. In Proceedings of the 16th ASP-DAC, 2011, p. 49-54, paper 1C-1 | en_HK |
dc.identifier.isbn | 978-1-4244-7516-2 | - |
dc.identifier.uri | http://hdl.handle.net/10722/140206 | - |
dc.description.abstract | Passivity-preserving model order reduction (MOR) of descriptor systems (DSs) is highly desired in the simulation of VLSI interconnects and on-chip passives. One popular method is PRIMA, a Krylov-subspace projection approach which preserves the passivity of positive semidefinite (PSD) structured DSs. However, system passivity is not guaranteed by PRIMA when the system is indefinite. Furthermore, the possible polynomial parts of singular systems are normally not captured. For indefinite DSs, positive-real balanced truncation (PRBT) can generate passive reduced-order models (ROMs), whose main bottleneck lies in solving the dual expensive generalized algebraic Riccati equations (GAREs). This paper presents a novel moment-matching MORfor indefinite DSs, which preserves both the system passivity and, if present, also the improper polynomial part. This method only requires solving one GARE, therefore it is cheaper than existing PRBT schemes. On the other hand, the proposed algorithm is capable of preserving the passivity of indefinite DSs, which is not guaranteed by traditional moment-matching MORs. Examples are finally presented showing that our method is superior to PRIMA in terms of accuracy. ©2011 IEEE. | en_HK |
dc.language | eng | en_US |
dc.publisher | IEEE. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000194 | - |
dc.relation.ispartof | Asia and South Pacific Design Automation Conference Proceedings | en_HK |
dc.subject | Balanced truncation | - |
dc.subject | Descriptor systems | - |
dc.subject | Generalized algebraic riccati equations | - |
dc.subject | Model order reduction | - |
dc.subject | Moment-matching | - |
dc.title | A moment-matching scheme for the passivity-preserving model order reduction of indefinite descriptor systems with possible polynomial parts | en_HK |
dc.type | Conference_Paper | en_HK |
dc.identifier.email | Zhang, Z: zzhang1@HKUSUC.hku.hk | en_HK |
dc.identifier.email | Wang, Q: wangqing@hku.hk | - |
dc.identifier.email | Wong, N: nwong@eee.hku.hk | - |
dc.identifier.authority | Wong, N=rp00190 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/ASPDAC.2011.5722240 | en_HK |
dc.identifier.scopus | eid_2-s2.0-79952961899 | en_HK |
dc.identifier.hkuros | 192306 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-79952961899&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.spage | 49 | en_HK |
dc.identifier.epage | 54 | en_HK |
dc.publisher.place | United States | - |
dc.description.other | The 16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011), Yokohama, Japan, 25-28 January 2011. In Proceedings of the 16th ASP-DAC, 2011, p. 49-54, paper 1C-1 | - |
dc.identifier.scopusauthorid | Daniel, L=7102917670 | en_HK |
dc.identifier.scopusauthorid | Wong, N=35235551600 | en_HK |
dc.identifier.scopusauthorid | Wang, Q=37076439700 | en_HK |
dc.identifier.scopusauthorid | Zhang, Z=37049561000 | en_HK |