File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.dss.2010.11.006
- Scopus: eid_2-s2.0-78650176118
- WOS: WOS:000286851300013
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Detection of financial statement fraud and feature selection using data mining techniques
Title | Detection of financial statement fraud and feature selection using data mining techniques |
---|---|
Authors | |
Keywords | Data mining Feature selection Financial fraud detection GP Neural networks SVM T-statistic |
Issue Date | 2011 |
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/dss |
Citation | Decision Support Systems, 2011, v. 50 n. 2, p. 491-500 How to Cite? |
Abstract | Recently, high profile cases of financial statement fraud have been dominating the news. This paper uses data mining techniques such as Multilayer Feed Forward Neural Network (MLFF), Support Vector Machines (SVM), Genetic Programming (GP), Group Method of Data Handling (GMDH), Logistic Regression (LR), and Probabilistic Neural Network (PNN) to identify companies that resort to financial statement fraud. Each of these techniques is tested on a dataset involving 202 Chinese companies and compared with and without feature selection. PNN outperformed all the techniques without feature selection, and GP and PNN outperformed others with feature selection and with marginally equal accuracies. © 2010 Elsevier B.V. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/139827 |
ISSN | 2023 Impact Factor: 6.7 2023 SCImago Journal Rankings: 2.211 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ravisankar, P | en_HK |
dc.contributor.author | Ravi, V | en_HK |
dc.contributor.author | Raghava Rao, G | en_HK |
dc.contributor.author | Bose, I | en_HK |
dc.date.accessioned | 2011-09-23T05:57:08Z | - |
dc.date.available | 2011-09-23T05:57:08Z | - |
dc.date.issued | 2011 | en_HK |
dc.identifier.citation | Decision Support Systems, 2011, v. 50 n. 2, p. 491-500 | en_HK |
dc.identifier.issn | 0167-9236 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/139827 | - |
dc.description.abstract | Recently, high profile cases of financial statement fraud have been dominating the news. This paper uses data mining techniques such as Multilayer Feed Forward Neural Network (MLFF), Support Vector Machines (SVM), Genetic Programming (GP), Group Method of Data Handling (GMDH), Logistic Regression (LR), and Probabilistic Neural Network (PNN) to identify companies that resort to financial statement fraud. Each of these techniques is tested on a dataset involving 202 Chinese companies and compared with and without feature selection. PNN outperformed all the techniques without feature selection, and GP and PNN outperformed others with feature selection and with marginally equal accuracies. © 2010 Elsevier B.V. All rights reserved. | en_HK |
dc.language | eng | en_US |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/dss | en_HK |
dc.relation.ispartof | Decision Support Systems | en_HK |
dc.subject | Data mining | en_HK |
dc.subject | Feature selection | en_HK |
dc.subject | Financial fraud detection | en_HK |
dc.subject | GP | en_HK |
dc.subject | Neural networks | en_HK |
dc.subject | SVM | en_HK |
dc.subject | T-statistic | en_HK |
dc.title | Detection of financial statement fraud and feature selection using data mining techniques | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0167-9236&volume=50&issue=2&spage=491&epage=500&date=2011&atitle=Detection+of+financial+statement+fraud+and+feature+selection+using+data+mining+techniques | - |
dc.identifier.email | Bose, I: bose@business.hku.hk | en_HK |
dc.identifier.authority | Bose, I=rp01041 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.dss.2010.11.006 | en_HK |
dc.identifier.scopus | eid_2-s2.0-78650176118 | en_HK |
dc.identifier.hkuros | 193214 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-78650176118&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 50 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | 491 | en_HK |
dc.identifier.epage | 500 | en_HK |
dc.identifier.isi | WOS:000286851300013 | - |
dc.publisher.place | Netherlands | en_HK |
dc.identifier.scopusauthorid | Ravisankar, P=35307820600 | en_HK |
dc.identifier.scopusauthorid | Ravi, V=15770237000 | en_HK |
dc.identifier.scopusauthorid | Raghava Rao, G=36651435000 | en_HK |
dc.identifier.scopusauthorid | Bose, I=7003751502 | en_HK |
dc.identifier.citeulike | 8298032 | - |
dc.identifier.issnl | 0167-9236 | - |