File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jspi.2008.07.020
- Scopus: eid_2-s2.0-57749210215
- WOS: WOS:000262760800017
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Bayesian goodness-of-fit test for censored data
Title | Bayesian goodness-of-fit test for censored data |
---|---|
Authors | |
Keywords | Bayesian inference Failure time data Hypothesis testing Model diagnostic Pearson statistic Posterior sample |
Issue Date | 2009 |
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/jspi |
Citation | Journal Of Statistical Planning And Inference, 2009, v. 139 n. 4, p. 1474-1483 How to Cite? |
Abstract | We propose a Bayesian computation and inference method for the Pearson-type chi-squared goodness-of-fit test with right-censored survival data. Our test statistic is derived from the classical Pearson chi-squared test using the differences between the observed and expected counts in the partitioned bins. In the Bayesian paradigm, we generate posterior samples of the model parameter using the Markov chain Monte Carlo procedure. By replacing the maximum likelihood estimator in the quadratic form with a random observation from the posterior distribution of the model parameter, we can easily construct a chi-squared test statistic. The degrees of freedom of the test equal the number of bins and thus is independent of the dimensionality of the underlying parameter vector. The test statistic recovers the conventional Pearson-type chi-squared structure. Moreover, the proposed algorithm circumvents the burden of evaluating the Fisher information matrix, its inverse and the rank of the variance-covariance matrix. We examine the proposed model diagnostic method using simulation studies and illustrate it with a real data set from a prostate cancer study. © 2008 Elsevier B.V. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/139726 |
ISSN | 2023 Impact Factor: 0.8 2023 SCImago Journal Rankings: 0.736 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yin, G | en_HK |
dc.date.accessioned | 2011-09-23T05:54:48Z | - |
dc.date.available | 2011-09-23T05:54:48Z | - |
dc.date.issued | 2009 | en_HK |
dc.identifier.citation | Journal Of Statistical Planning And Inference, 2009, v. 139 n. 4, p. 1474-1483 | en_HK |
dc.identifier.issn | 0378-3758 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/139726 | - |
dc.description.abstract | We propose a Bayesian computation and inference method for the Pearson-type chi-squared goodness-of-fit test with right-censored survival data. Our test statistic is derived from the classical Pearson chi-squared test using the differences between the observed and expected counts in the partitioned bins. In the Bayesian paradigm, we generate posterior samples of the model parameter using the Markov chain Monte Carlo procedure. By replacing the maximum likelihood estimator in the quadratic form with a random observation from the posterior distribution of the model parameter, we can easily construct a chi-squared test statistic. The degrees of freedom of the test equal the number of bins and thus is independent of the dimensionality of the underlying parameter vector. The test statistic recovers the conventional Pearson-type chi-squared structure. Moreover, the proposed algorithm circumvents the burden of evaluating the Fisher information matrix, its inverse and the rank of the variance-covariance matrix. We examine the proposed model diagnostic method using simulation studies and illustrate it with a real data set from a prostate cancer study. © 2008 Elsevier B.V. All rights reserved. | en_HK |
dc.language | eng | en_US |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/jspi | en_HK |
dc.relation.ispartof | Journal of Statistical Planning and Inference | en_HK |
dc.subject | Bayesian inference | en_HK |
dc.subject | Failure time data | en_HK |
dc.subject | Hypothesis testing | en_HK |
dc.subject | Model diagnostic | en_HK |
dc.subject | Pearson statistic | en_HK |
dc.subject | Posterior sample | en_HK |
dc.title | Bayesian goodness-of-fit test for censored data | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0378-3758&volume=139&issue=4&spage=1474&epage=1483&date=2009&atitle=Bayesian+goodness-of-fit+test+for+censored+data | - |
dc.identifier.email | Yin, G: gyin@hku.hk | en_HK |
dc.identifier.authority | Yin, G=rp00831 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.jspi.2008.07.020 | en_HK |
dc.identifier.scopus | eid_2-s2.0-57749210215 | en_HK |
dc.identifier.hkuros | 195660 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-57749210215&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 139 | en_HK |
dc.identifier.issue | 4 | en_HK |
dc.identifier.spage | 1474 | en_HK |
dc.identifier.epage | 1483 | en_HK |
dc.identifier.isi | WOS:000262760800017 | - |
dc.publisher.place | Netherlands | en_HK |
dc.identifier.scopusauthorid | Yin, G=8725807500 | en_HK |
dc.identifier.issnl | 0378-3758 | - |