File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1093/biomet/asp005
- Scopus: eid_2-s2.0-66249100528
- WOS: WOS:000266344300004
- Find via
Supplementary
-
Bookmarks:
- CiteULike: 1
- Citations:
- Appears in Collections:
Article: Generalized method of moments estimation for linear regression with clustered failure time data
Title | Generalized method of moments estimation for linear regression with clustered failure time data |
---|---|
Authors | |
Keywords | Accelerated failure time model Asymptotic normality Correlated survival data Estimation efficiency Moment condition Rank estimation Semiparametric model |
Issue Date | 2009 |
Publisher | Oxford University Press. The Journal's web site is located at http://biomet.oxfordjournals.org/ |
Citation | Biometrika, 2009, v. 96 n. 2, p. 293-306 How to Cite? |
Abstract | We propose a generalized method of moments approach to the accelerated failure time model with correlated survival data. We study the semiparametric rank estimator using martingale-based moments. We circumvent direct estimation of correlation parameters by concatenating the moments and minimizing a quadratic objective function. We establish the consistency and asymptotic normality of the parameter estimators, and derive the limiting distribution of the objective function. We carry out simulation studies to examine the finite-sample properties of the method, and demonstrate its substantial efficiency gain over the conventional method. Finally, we illustrate the new proposal with an example from a diabetic retinopathy study. © 2009 Biometrika Trust. |
Persistent Identifier | http://hdl.handle.net/10722/139725 |
ISSN | 2023 Impact Factor: 2.4 2023 SCImago Journal Rankings: 3.358 |
ISI Accession Number ID | |
References | |
Errata |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, H | en_HK |
dc.contributor.author | Yin, G | en_HK |
dc.date.accessioned | 2011-09-23T05:54:48Z | - |
dc.date.available | 2011-09-23T05:54:48Z | - |
dc.date.issued | 2009 | en_HK |
dc.identifier.citation | Biometrika, 2009, v. 96 n. 2, p. 293-306 | en_HK |
dc.identifier.issn | 0006-3444 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/139725 | - |
dc.description.abstract | We propose a generalized method of moments approach to the accelerated failure time model with correlated survival data. We study the semiparametric rank estimator using martingale-based moments. We circumvent direct estimation of correlation parameters by concatenating the moments and minimizing a quadratic objective function. We establish the consistency and asymptotic normality of the parameter estimators, and derive the limiting distribution of the objective function. We carry out simulation studies to examine the finite-sample properties of the method, and demonstrate its substantial efficiency gain over the conventional method. Finally, we illustrate the new proposal with an example from a diabetic retinopathy study. © 2009 Biometrika Trust. | en_HK |
dc.language | eng | en_US |
dc.publisher | Oxford University Press. The Journal's web site is located at http://biomet.oxfordjournals.org/ | en_HK |
dc.relation.ispartof | Biometrika | en_HK |
dc.subject | Accelerated failure time model | en_HK |
dc.subject | Asymptotic normality | en_HK |
dc.subject | Correlated survival data | en_HK |
dc.subject | Estimation efficiency | en_HK |
dc.subject | Moment condition | en_HK |
dc.subject | Rank estimation | en_HK |
dc.subject | Semiparametric model | en_HK |
dc.title | Generalized method of moments estimation for linear regression with clustered failure time data | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0006-3444&volume=96&issue=2&spage=293&epage=306&date=2009&atitle=Generalized+method+of+moments+estimation+for+linear+regression+with+clustered+failure+time+data | - |
dc.identifier.email | Yin, G: gyin@hku.hk | en_HK |
dc.identifier.authority | Yin, G=rp00831 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1093/biomet/asp005 | en_HK |
dc.identifier.scopus | eid_2-s2.0-66249100528 | en_HK |
dc.identifier.hkuros | 195659 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-66249100528&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 96 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | 293 | en_HK |
dc.identifier.epage | 306 | en_HK |
dc.identifier.eissn | 1464-3510 | - |
dc.identifier.isi | WOS:000266344300004 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.relation.erratum | doi:10.1093/biomet/asp061 | - |
dc.identifier.scopusauthorid | Li, H=8423900800 | en_HK |
dc.identifier.scopusauthorid | Yin, G=8725807500 | en_HK |
dc.identifier.citeulike | 4788648 | - |
dc.identifier.issnl | 0006-3444 | - |