File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1111/j.1541-0420.2009.01269.x
- Scopus: eid_2-s2.0-77949724484
- PMID: 19459836
- WOS: WOS:000275727200013
- Find via
Supplementary
-
Bookmarks:
- CiteULike: 1
- Citations:
- Appears in Collections:
Article: Bayesian quantile regression for longitudinal studies with nonignorable missing data
Title | Bayesian quantile regression for longitudinal studies with nonignorable missing data |
---|---|
Authors | |
Keywords | Bayesian inference Informative missing data Nonignorable dropout Penalized function Random effects Repeated measures Shared-parameter model |
Issue Date | 2010 |
Publisher | Blackwell Publishing Ltd. The Journal's web site is located at http://www.blackwellpublishing.com/journals/BIOM |
Citation | Biometrics, 2010, v. 66 n. 1, p. 105-114 How to Cite? |
Abstract | We study quantile regression (QR) for longitudinal measurements with nonignorable intermittent missing data and dropout. Compared to conventional mean regression, quantile regression can characterize the entire conditional distribution of the outcome variable, and is more robust to outliers and misspecification of the error distribution. We account for the within-subject correlation by introducing a ℓ 2 penalty in the usual QR check function to shrink the subject-specific intercepts and slopes toward the common population values. The informative missing data are assumed to be related to the longitudinal outcome process through the shared latent random effects. We assess the performance of the proposed method using simulation studies, and illustrate it with data from a pediatric AIDS clinical trial. © 2009, The International Biometric Society. |
Persistent Identifier | http://hdl.handle.net/10722/139724 |
ISSN | 2023 Impact Factor: 1.4 2023 SCImago Journal Rankings: 1.480 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yuan, Y | en_HK |
dc.contributor.author | Yin, G | en_HK |
dc.date.accessioned | 2011-09-23T05:54:48Z | - |
dc.date.available | 2011-09-23T05:54:48Z | - |
dc.date.issued | 2010 | en_HK |
dc.identifier.citation | Biometrics, 2010, v. 66 n. 1, p. 105-114 | en_HK |
dc.identifier.issn | 0006-341X | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/139724 | - |
dc.description.abstract | We study quantile regression (QR) for longitudinal measurements with nonignorable intermittent missing data and dropout. Compared to conventional mean regression, quantile regression can characterize the entire conditional distribution of the outcome variable, and is more robust to outliers and misspecification of the error distribution. We account for the within-subject correlation by introducing a ℓ 2 penalty in the usual QR check function to shrink the subject-specific intercepts and slopes toward the common population values. The informative missing data are assumed to be related to the longitudinal outcome process through the shared latent random effects. We assess the performance of the proposed method using simulation studies, and illustrate it with data from a pediatric AIDS clinical trial. © 2009, The International Biometric Society. | en_HK |
dc.language | eng | en_US |
dc.publisher | Blackwell Publishing Ltd. The Journal's web site is located at http://www.blackwellpublishing.com/journals/BIOM | en_HK |
dc.relation.ispartof | Biometrics | en_HK |
dc.rights | The definitive version is available at www.blackwell-synergy.com | - |
dc.subject | Bayesian inference | en_HK |
dc.subject | Informative missing data | en_HK |
dc.subject | Nonignorable dropout | en_HK |
dc.subject | Penalized function | en_HK |
dc.subject | Random effects | en_HK |
dc.subject | Repeated measures | en_HK |
dc.subject | Shared-parameter model | en_HK |
dc.subject.mesh | Algorithms | - |
dc.subject.mesh | Bayes Theorem | - |
dc.subject.mesh | Biometry - methods | - |
dc.subject.mesh | Data Interpretation, Statistical | - |
dc.subject.mesh | Information Storage and Retrieval - methods | - |
dc.title | Bayesian quantile regression for longitudinal studies with nonignorable missing data | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0006-341X&volume=66&issue=1&spage=105&epage=114&date=2010&atitle=Bayesian+quantile+regression+for+longitudinal+studies+with+nonignorable+missing+data | - |
dc.identifier.email | Yin, G: gyin@hku.hk | en_HK |
dc.identifier.authority | Yin, G=rp00831 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1111/j.1541-0420.2009.01269.x | en_HK |
dc.identifier.pmid | 19459836 | - |
dc.identifier.scopus | eid_2-s2.0-77949724484 | en_HK |
dc.identifier.hkuros | 195658 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-77949724484&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 66 | en_HK |
dc.identifier.issue | 1 | en_HK |
dc.identifier.spage | 105 | en_HK |
dc.identifier.epage | 114 | en_HK |
dc.identifier.isi | WOS:000275727200013 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Yuan, Y=7402709174 | en_HK |
dc.identifier.scopusauthorid | Yin, G=8725807500 | en_HK |
dc.identifier.citeulike | 4914054 | - |
dc.identifier.issnl | 0006-341X | - |