Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1093/qmath/hap045
- Scopus: eid_2-s2.0-79957522067
- WOS: WOS:000290816500003
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: An extension to the Brun-Titchmarsh theorem
Title | An extension to the Brun-Titchmarsh theorem | ||||||
---|---|---|---|---|---|---|---|
Authors | |||||||
Issue Date | 2011 | ||||||
Publisher | Oxford University Press. The Journal's web site is located at http://qjmath.oxfordjournals.org/ | ||||||
Citation | Quarterly Journal Of Mathematics, 2011, v. 62 n. 2, p. 307-322 How to Cite? | ||||||
Abstract | The Siegel-Walfisz theorem states that for any B > 0, we have ∑/p≤x/p≡a(mod k) 1 ∼ x/φ(k) lox x for k ≤ log B x and (k, a) = 1. This only gives an asymptotic formula for the number of primes over an arithmetic progression for quite small moduli k compared with x. However, if we are only concerned about upper bound, we have the Brun-Titchmarsh theorem, namely for any 1 ≤ k < x, ∑/p≤x/p≡a(mod k) 1 ≪ x/φ(k) lox (x/k) In this article, we prove an extension to the Brun-Titchmarsh theorem on the number of integers, with at most s prime factors, in an arithmetic progression, namely ∑/y | ||||||
Persistent Identifier | http://hdl.handle.net/10722/139347 | ||||||
ISSN | 2015 Impact Factor: 0.853 2015 SCImago Journal Rankings: 1.289 | ||||||
ISI Accession Number ID |
Funding Information: Research of K.K.C. was supported by NSERC of Canada. Research of K.M.T. was fully supported by RGC grant HKU 7042/04P of Hong Kong, SAR, China. | ||||||
References | |||||||
Grants |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chan, TH | en_HK |
dc.contributor.author | Choi, SKK | en_HK |
dc.contributor.author | Tsang, KM | en_HK |
dc.date.accessioned | 2011-09-23T05:48:34Z | - |
dc.date.available | 2011-09-23T05:48:34Z | - |
dc.date.issued | 2011 | en_HK |
dc.identifier.citation | Quarterly Journal Of Mathematics, 2011, v. 62 n. 2, p. 307-322 | en_HK |
dc.identifier.issn | 0033-5606 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/139347 | - |
dc.description.abstract | The Siegel-Walfisz theorem states that for any B > 0, we have ∑/p≤x/p≡a(mod k) 1 ∼ x/φ(k) lox x for k ≤ log B x and (k, a) = 1. This only gives an asymptotic formula for the number of primes over an arithmetic progression for quite small moduli k compared with x. However, if we are only concerned about upper bound, we have the Brun-Titchmarsh theorem, namely for any 1 ≤ k < x, ∑/p≤x/p≡a(mod k) 1 ≪ x/φ(k) lox (x/k) In this article, we prove an extension to the Brun-Titchmarsh theorem on the number of integers, with at most s prime factors, in an arithmetic progression, namely ∑/y<n≤x+y ≡ a (mod k)ω (n) < s for any x, y > 0, s ≥ 1 and 1 ≤ k < x.In particular, for s ≤ log log (x/k), we have ∑/y<n≤x+y ≡ a (mod k)ω (n) < s 1 ≪ x/φ (k) log (x/k) (log log (x/k) + K)s-1/(s-1)! √ log log (x/k) + K and for any ε∈(0, 1) and s ≤ (1-ε) log log (x/k), we have. ∑/y<n≤x+y ≡ a (mod k)ω (n) < s 1 ≪ ε-1x/φ (k) log (x/k) (log log (x/k) +K)s-1/(s-1) !. © 2010. Published by Oxford University Press. All rights reserved. | en_HK |
dc.language | eng | en_US |
dc.publisher | Oxford University Press. The Journal's web site is located at http://qjmath.oxfordjournals.org/ | en_HK |
dc.relation.ispartof | Quarterly Journal of Mathematics | en_HK |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.title | An extension to the Brun-Titchmarsh theorem | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Tsang, KM:kmtsang@maths.hku.hk | en_HK |
dc.identifier.authority | Tsang, KM=rp00793 | en_HK |
dc.description.nature | postprint | - |
dc.identifier.doi | 10.1093/qmath/hap045 | en_HK |
dc.identifier.scopus | eid_2-s2.0-79957522067 | en_HK |
dc.identifier.hkuros | 192206 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-79957522067&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 62 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | 307 | en_HK |
dc.identifier.epage | 322 | en_HK |
dc.identifier.eissn | 1464-3847 | - |
dc.identifier.isi | WOS:000290816500003 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.relation.project | Error Terms in the Summatory Formula for certain Arithmetical Functions | - |
dc.identifier.scopusauthorid | Chan, TH=7402680875 | en_HK |
dc.identifier.scopusauthorid | Choi, SKK=7408121473 | en_HK |
dc.identifier.scopusauthorid | Tsang, KM=7201554731 | en_HK |
dc.identifier.citeulike | 9375070 | - |