**Article:**An extension to the Brun-Titchmarsh theorem

Title | An extension to the Brun-Titchmarsh theorem | ||||||
---|---|---|---|---|---|---|---|

Authors | Chan, TH2 Choi, SKK3 Tsang, KM1 | ||||||

Issue Date | 2011 | ||||||

Publisher | Oxford University Press. The Journal's web site is located at http://qjmath.oxfordjournals.org/ | ||||||

Citation | Quarterly Journal Of Mathematics, 2011, v. 62 n. 2, p. 307-322 [How to Cite?] DOI: http://dx.doi.org/10.1093/qmath/hap045 | ||||||

Abstract | The Siegel-Walfisz theorem states that for any B > 0, we have ∑/p≤x/p≡a(mod k) 1 ∼ x/φ(k) lox x for k ≤ log B x and (k, a) = 1. This only gives an asymptotic formula for the number of primes over an arithmetic progression for quite small moduli k compared with x. However, if we are only concerned about upper bound, we have the Brun-Titchmarsh theorem, namely for any 1 ≤ k < x, ∑/p≤x/p≡a(mod k) 1 ≪ x/φ(k) lox (x/k) In this article, we prove an extension to the Brun-Titchmarsh theorem on the number of integers, with at most s prime factors, in an arithmetic progression, namely ∑/y<n≤x+y ≡ a (mod k)ω (n) < s for any x, y > 0, s ≥ 1 and 1 ≤ k < x.In particular, for s ≤ log log (x/k), we have ∑/y<n≤x+y ≡ a (mod k)ω (n) < s 1 ≪ x/φ (k) log (x/k) (log log (x/k) + K)s-1/(s-1)! √ log log (x/k) + K and for any ε∈(0, 1) and s ≤ (1-ε) log log (x/k), we have. ∑/y<n≤x+y ≡ a (mod k)ω (n) < s 1 ≪ ε-1x/φ (k) log (x/k) (log log (x/k) +K)s-1/(s-1) !. © 2010. Published by Oxford University Press. All rights reserved. | ||||||

ISSN | 0033-5606 2013 Impact Factor: 0.593 | ||||||

DOI | http://dx.doi.org/10.1093/qmath/hap045 | ||||||

ISI Accession Number ID | WOS:000290816500003
Funding Information: Research of K.K.C. was supported by NSERC of Canada. Research of K.M.T. was fully supported by RGC grant HKU 7042/04P of Hong Kong, SAR, China. | ||||||

References | References in Scopus | ||||||

Grants | Error Terms in the Summatory Formula for certain Arithmetical Functions | ||||||

DC Field | Value | ||||||
---|---|---|---|---|---|---|---|

dc.contributor.author | Chan, TH | ||||||

dc.contributor.author | Choi, SKK | ||||||

dc.contributor.author | Tsang, KM | ||||||

dc.date.accessioned | 2011-09-23T05:48:34Z | ||||||

dc.date.available | 2011-09-23T05:48:34Z | ||||||

dc.date.issued | 2011 | ||||||

dc.description.abstract | The Siegel-Walfisz theorem states that for any B > 0, we have ∑/p≤x/p≡a(mod k) 1 ∼ x/φ(k) lox x for k ≤ log B x and (k, a) = 1. This only gives an asymptotic formula for the number of primes over an arithmetic progression for quite small moduli k compared with x. However, if we are only concerned about upper bound, we have the Brun-Titchmarsh theorem, namely for any 1 ≤ k < x, ∑/p≤x/p≡a(mod k) 1 ≪ x/φ(k) lox (x/k) In this article, we prove an extension to the Brun-Titchmarsh theorem on the number of integers, with at most s prime factors, in an arithmetic progression, namely ∑/y<n≤x+y ≡ a (mod k)ω (n) < s for any x, y > 0, s ≥ 1 and 1 ≤ k < x.In particular, for s ≤ log log (x/k), we have ∑/y<n≤x+y ≡ a (mod k)ω (n) < s 1 ≪ x/φ (k) log (x/k) (log log (x/k) + K)s-1/(s-1)! √ log log (x/k) + K and for any ε∈(0, 1) and s ≤ (1-ε) log log (x/k), we have. ∑/y<n≤x+y ≡ a (mod k)ω (n) < s 1 ≪ ε-1x/φ (k) log (x/k) (log log (x/k) +K)s-1/(s-1) !. © 2010. Published by Oxford University Press. All rights reserved. | ||||||

dc.description.nature | postprint | ||||||

dc.identifier.citation | Quarterly Journal Of Mathematics, 2011, v. 62 n. 2, p. 307-322 [How to Cite?] DOI: http://dx.doi.org/10.1093/qmath/hap045 | ||||||

dc.identifier.citeulike | 9375070 | ||||||

dc.identifier.doi | http://dx.doi.org/10.1093/qmath/hap045 | ||||||

dc.identifier.eissn | 1464-3847 | ||||||

dc.identifier.epage | 322 | ||||||

dc.identifier.hkuros | 192206 | ||||||

dc.identifier.isi | WOS:000290816500003
Funding Information: Research of K.K.C. was supported by NSERC of Canada. Research of K.M.T. was fully supported by RGC grant HKU 7042/04P of Hong Kong, SAR, China. | ||||||

dc.identifier.issn | 0033-5606 2013 Impact Factor: 0.593 | ||||||

dc.identifier.issue | 2 | ||||||

dc.identifier.scopus | eid_2-s2.0-79957522067 | ||||||

dc.identifier.spage | 307 | ||||||

dc.identifier.uri | http://hdl.handle.net/10722/139347 | ||||||

dc.identifier.volume | 62 | ||||||

dc.language | eng | ||||||

dc.publisher | Oxford University Press. The Journal's web site is located at http://qjmath.oxfordjournals.org/ | ||||||

dc.publisher.place | United Kingdom | ||||||

dc.relation.ispartof | Quarterly Journal of Mathematics | ||||||

dc.relation.project | Error Terms in the Summatory Formula for certain Arithmetical Functions | ||||||

dc.relation.references | References in Scopus | ||||||

dc.rights | Creative Commons: Attribution 3.0 Hong Kong License | ||||||

dc.title | An extension to the Brun-Titchmarsh theorem | ||||||

dc.type | Article | ||||||

<?xml encoding="utf-8" version="1.0"?> <item><contributor.author>Chan, TH</contributor.author> <contributor.author>Choi, SKK</contributor.author> <contributor.author>Tsang, KM</contributor.author> <date.accessioned>2011-09-23T05:48:34Z</date.accessioned> <date.available>2011-09-23T05:48:34Z</date.available> <date.issued>2011</date.issued> <identifier.citation>Quarterly Journal Of Mathematics, 2011, v. 62 n. 2, p. 307-322</identifier.citation> <identifier.issn>0033-5606</identifier.issn> <identifier.uri>http://hdl.handle.net/10722/139347</identifier.uri> <description.abstract>The Siegel-Walfisz theorem states that for any B > 0, we have ∑/p≤x/p≡a(mod k) 1 ∼ x/φ(k) lox x for k ≤ log B x and (k, a) = 1. This only gives an asymptotic formula for the number of primes over an arithmetic progression for quite small moduli k compared with x. However, if we are only concerned about upper bound, we have the Brun-Titchmarsh theorem, namely for any 1 ≤ k < x, ∑/p≤x/p≡a(mod k) 1 ≪ x/φ(k) lox (x/k) In this article, we prove an extension to the Brun-Titchmarsh theorem on the number of integers, with at most s prime factors, in an arithmetic progression, namely ∑/y<n≤x+y ≡ a (mod k)ω (n) < s for any x, y > 0, s ≥ 1 and 1 ≤ k < x.In particular, for s ≤ log log (x/k), we have ∑/y<n≤x+y ≡ a (mod k)ω (n) < s 1 ≪ x/φ (k) log (x/k) (log log (x/k) + K)s-1/(s-1)! √ log log (x/k) + K and for any ε∈(0, 1) and s ≤ (1-ε) log log (x/k), we have. ∑/y<n≤x+y ≡ a (mod k)ω (n) < s 1 ≪ ε-1x/φ (k) log (x/k) (log log (x/k) +K)s-1/(s-1) !. © 2010. Published by Oxford University Press. All rights reserved.</description.abstract> <language>eng</language> <publisher>Oxford University Press. The Journal's web site is located at http://qjmath.oxfordjournals.org/</publisher> <relation.ispartof>Quarterly Journal of Mathematics</relation.ispartof> <rights>Creative Commons: Attribution 3.0 Hong Kong License</rights> <title>An extension to the Brun-Titchmarsh theorem</title> <type>Article</type> <description.nature>postprint</description.nature> <identifier.doi>10.1093/qmath/hap045</identifier.doi> <identifier.scopus>eid_2-s2.0-79957522067</identifier.scopus> <identifier.hkuros>192206</identifier.hkuros> <relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-79957522067&selection=ref&src=s&origin=recordpage</relation.references> <identifier.volume>62</identifier.volume> <identifier.issue>2</identifier.issue> <identifier.spage>307</identifier.spage> <identifier.epage>322</identifier.epage> <identifier.eissn>1464-3847</identifier.eissn> <identifier.isi>WOS:000290816500003</identifier.isi> <publisher.place>United Kingdom</publisher.place> <relation.project>Error Terms in the Summatory Formula for certain Arithmetical Functions</relation.project> <identifier.citeulike>9375070</identifier.citeulike> <bitstream.url>http://hub.hku.hk/bitstream/10722/139347/1/content.pdf</bitstream.url> </item>

Author Affiliations

- The University of Hong Kong
- University of Memphis
- Simon Fraser University