File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Multiscale quantum mechanics/electromagnetics simulation for electronic devices

TitleMultiscale quantum mechanics/electromagnetics simulation for electronic devices
Authors
Issue Date2011
PublisherRoyal Society of Chemistry. The Journal's web site is located at http://www.rsc.org/pccp
Citation
Physical Chemistry Chemical Physics, 2011, v. 13 n. 32, p. 14365-14369 How to Cite?
AbstractThe continuous downsizing of modern electronic devices implies the increasing importance of quantum phenomena. As the feature sizes of transistors inch towards 10 nanometer, simulations including quantum effects and atomistic details are inevitable. Here we report a novel hybrid quantum mechanics and electromagnetics (QM/EM) method to model individual electronic components at the nanoscale. QM and EM models are solved in different regions of the system in a self-consistent manner. As a demostration, we study a carbon nanotube based electronic device embedded in a silicon block. Good agreement is obtained between simulation by QM/EM method and full QM treatment of the entire system. © the Owner Societies 2011.
Persistent Identifierhttp://hdl.handle.net/10722/138975
ISSN
2015 Impact Factor: 4.449
2015 SCImago Journal Rankings: 1.836
ISI Accession Number ID
Funding AgencyGrant Number
Hong Kong University Grant CouncilAoE/P-04/08
Hong Kong Research Grant CouncilHKU700909P
HKUST9/CRF/08
HKU700808P
HKU701307P
University of Hong Kong2010-11159085
201010159001
Funding Information:

We thank the Hong Kong University Grant Council (AoE/P-04/08), Hong Kong Research Grant Council (HKU700909P, HKUST9/CRF/08, HKU700808P and HKU701307P) and The University of Hong Kong (UDF on Fast Algorithm, Seed Funding Programme for Basic Research 2010-11159085 and 201010159001) for the support.

References
Grants

 

DC FieldValueLanguage
dc.contributor.authorYam, Cen_HK
dc.contributor.authorMeng, Len_HK
dc.contributor.authorChen, Gen_HK
dc.contributor.authorChen, Qen_HK
dc.contributor.authorWong, Nen_HK
dc.date.accessioned2011-09-23T05:43:31Z-
dc.date.available2011-09-23T05:43:31Z-
dc.date.issued2011en_HK
dc.identifier.citationPhysical Chemistry Chemical Physics, 2011, v. 13 n. 32, p. 14365-14369en_HK
dc.identifier.issn1463-9076en_HK
dc.identifier.urihttp://hdl.handle.net/10722/138975-
dc.description.abstractThe continuous downsizing of modern electronic devices implies the increasing importance of quantum phenomena. As the feature sizes of transistors inch towards 10 nanometer, simulations including quantum effects and atomistic details are inevitable. Here we report a novel hybrid quantum mechanics and electromagnetics (QM/EM) method to model individual electronic components at the nanoscale. QM and EM models are solved in different regions of the system in a self-consistent manner. As a demostration, we study a carbon nanotube based electronic device embedded in a silicon block. Good agreement is obtained between simulation by QM/EM method and full QM treatment of the entire system. © the Owner Societies 2011.en_HK
dc.languageengen_US
dc.publisherRoyal Society of Chemistry. The Journal's web site is located at http://www.rsc.org/pccpen_HK
dc.relation.ispartofPhysical Chemistry Chemical Physicsen_HK
dc.titleMultiscale quantum mechanics/electromagnetics simulation for electronic devicesen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1463-9076&volume=13&issue=32&spage=14365&epage=14369&date=2011&atitle=Multiscale+quantum+mechanics/electromagnetics+simulation+for+electronic+devicesen_US
dc.identifier.emailYam, C: yamcy1@hku.hken_HK
dc.identifier.emailChen, G: ghchen@hku.hken_HK
dc.identifier.emailChen, Q: q1chen@hku.hken_HK
dc.identifier.emailWong, N: nwong@eee.hku.hken_HK
dc.identifier.authorityYam, C=rp01399en_HK
dc.identifier.authorityChen, G=rp00671en_HK
dc.identifier.authorityChen, Q=rp01688en_HK
dc.identifier.authorityWong, N=rp00190en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1039/c1cp20766ken_HK
dc.identifier.pmid21660348-
dc.identifier.scopuseid_2-s2.0-80051688345en_HK
dc.identifier.hkuros192294en_US
dc.identifier.hkuros210502-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-80051688345&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume13en_HK
dc.identifier.issue32en_HK
dc.identifier.spage14365en_HK
dc.identifier.epage14369en_HK
dc.identifier.isiWOS:000293516200011-
dc.publisher.placeUnited Kingdomen_HK
dc.relation.projectExperimental and theoretical study of carbon nanotube superconductivity and nanostructured graphene charactistics-
dc.relation.projectTheory, Modeling, and Simulation of Emerging Electronics-
dc.identifier.scopusauthoridYam, C=7004032400en_HK
dc.identifier.scopusauthoridMeng, L=23995724500en_HK
dc.identifier.scopusauthoridChen, G=35253368600en_HK
dc.identifier.scopusauthoridChen, Q=18133382800en_HK
dc.identifier.scopusauthoridWong, N=35235551600en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats