File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Simultaneous cartoon and texture reconstruction for image restoration by bivariate function

TitleSimultaneous cartoon and texture reconstruction for image restoration by bivariate function
Authors
KeywordsCartoon
Image
Sparse
Texture
Total variation
Issue Date2011
PublisherTaylor & Francis Ltd. The Journal's web site is located at http://www.tandf.co.uk/journals/titles/00036811.html
Citation
Applicable Analysis, 2011, v. 90 n. 8, p. 1275-1289 How to Cite?
AbstractWe study the simultaneous cartoon and texture reconstruction problem. We propose a new model to approximate the cartoon and texture part by a sparse linear combination of some bases. A bivariate function is employed as the cost function. One of the variables is the decomposition image and the other is the sparse representation of the decomposition image. An alternating minimization algorithm is used to solve the minimization problem. We prove that the algorithm converges for both the l1-norm and the l0-norm. Numerical simulations are given to illustrate the efficiency of our method. © 2011 Taylor & Francis.
Persistent Identifierhttp://hdl.handle.net/10722/135156
ISSN
2023 Impact Factor: 1.1
2023 SCImago Journal Rankings: 0.551
ISI Accession Number ID
Funding AgencyGrant Number
NSFC60702030
NSF of Guangdong9251064201000009
CUHK400508
Centre for Wavelets, Approximation and Information Processing and Temasek Laboratories, National University of Singapore, Singapore
Funding Information:

Research supported in part by NSFC Grant No. 60702030, NSF of Guangdong Grant No. 9251064201000009, CUHK400508 and the Wavelets and Information Processing Programme of the Centre for Wavelets, Approximation and Information Processing and Temasek Laboratories, National University of Singapore, Singapore.

References

 

DC FieldValueLanguage
dc.contributor.authorWen, YWen_HK
dc.contributor.authorChan, RHen_HK
dc.contributor.authorChing, WKen_HK
dc.date.accessioned2011-07-27T01:29:09Z-
dc.date.available2011-07-27T01:29:09Z-
dc.date.issued2011en_HK
dc.identifier.citationApplicable Analysis, 2011, v. 90 n. 8, p. 1275-1289en_HK
dc.identifier.issn0003-6811en_HK
dc.identifier.urihttp://hdl.handle.net/10722/135156-
dc.description.abstractWe study the simultaneous cartoon and texture reconstruction problem. We propose a new model to approximate the cartoon and texture part by a sparse linear combination of some bases. A bivariate function is employed as the cost function. One of the variables is the decomposition image and the other is the sparse representation of the decomposition image. An alternating minimization algorithm is used to solve the minimization problem. We prove that the algorithm converges for both the l1-norm and the l0-norm. Numerical simulations are given to illustrate the efficiency of our method. © 2011 Taylor & Francis.en_HK
dc.languageengen_US
dc.publisherTaylor & Francis Ltd. The Journal's web site is located at http://www.tandf.co.uk/journals/titles/00036811.htmlen_HK
dc.relation.ispartofApplicable Analysisen_HK
dc.subjectCartoonen_HK
dc.subjectImageen_HK
dc.subjectSparseen_HK
dc.subjectTextureen_HK
dc.subjectTotal variationen_HK
dc.titleSimultaneous cartoon and texture reconstruction for image restoration by bivariate functionen_HK
dc.typeArticleen_HK
dc.identifier.emailChing, WK:wching@hku.hken_HK
dc.identifier.authorityChing, WK=rp00679en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1080/00036811.2010.483814en_HK
dc.identifier.scopuseid_2-s2.0-79960182598en_HK
dc.identifier.hkuros187722en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-79960182598&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume90en_HK
dc.identifier.issue8en_HK
dc.identifier.spage1275en_HK
dc.identifier.epage1289en_HK
dc.identifier.isiWOS:000299684100006-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridWen, YW=7401777008en_HK
dc.identifier.scopusauthoridChan, RH=7403110910en_HK
dc.identifier.scopusauthoridChing, WK=13310265500en_HK
dc.identifier.issnl0003-6811-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats