File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s11357-011-9260-2
- Scopus: eid_2-s2.0-84863717137
- PMID: 21559868
- WOS: WOS:000303507400010
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Neurodegeneration of the retina in mouse models of Alzheimer's disease: what can we learn from the retina?
Title | Neurodegeneration of the retina in mouse models of Alzheimer's disease: what can we learn from the retina? | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Authors | |||||||||||
Keywords | Age-related macular degeneration Alzheimer's disease Glaucoma Inner nuclear layer Neurodegeneration Retina Retinal ganglion cells | ||||||||||
Issue Date | 2012 | ||||||||||
Publisher | Springer Netherlands. The Journal's web site is located at http://www.springerlink.com/content/0161-9152/ | ||||||||||
Citation | Age, 2012, v. 34 n. 3, p. 633-649 How to Cite? | ||||||||||
Abstract | Alzheimer's disease (AD) is an age-related progressive neurodegenerative disease commonly found among elderly. In addition to cognitive and behavioral deficits, vision abnormalities are prevalent in AD patients. Recent studies investigating retinal changes in AD double-transgenic mice have shown altered processing of amyloid precursor protein and accumulation of β-amyloid peptides in neurons of retinal ganglion cell layer (RGCL) and inner nuclear layer (INL). Apoptotic cells were also detected in the RGCL. Thus, the pathophysiological changes of retinas in AD patients are possibly resembled by AD transgenic models. The retina is a simple model of the brain in the sense that some pathological changes and therapeutic strategies from the retina may be observed or applicable to the brain. Furthermore, it is also possible to advance our understanding of pathological mechanisms in other retinal degenerative diseases. Therefore, studying AD-related retinal degeneration is a promising way for the investigation on (1) AD pathologies and therapies that would eventually benefit the brain and (2) cellular mechanisms in other retinal degenerations such as glaucoma and age-related macular degeneration. This review will highlight the efforts on retinal degenerative research using AD transgenic mouse models. © 2011 The Author(s). | ||||||||||
Persistent Identifier | http://hdl.handle.net/10722/135016 | ||||||||||
ISSN | 2018 Impact Factor: 4.648 | ||||||||||
PubMed Central ID | |||||||||||
ISI Accession Number ID |
Funding Information: Research in this laboratory is partly supported by HKU Alzheimer's Disease Research Network under Strategic Research Theme on Healthy Aging, Strategic Research Theme on Drug Discovery, Azalea (1972) Endowment Fund, and HKU Small Project Fund (20097176185). | ||||||||||
References | Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431 doi: 10.1016/S0002-9394(02)01624-0 Anderson DH, Talaga KC, Rivest AJ, Barron E, Hageman GS, Johnson LV (2004) Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78:243–256 doi: 10.1016/j.exer.2003.10.011 Arendash GW, Lewis J, Leighty RE, McGowan E, Cracchiolo JR, Hutton M, Garcia MF (2004) Multi-metric behavioral comparison of APPsw and P301L models for Alzheimer’s disease: linkage of poorer cognitive performance to tau pathology in forebrain. Brain Res 1012:29–41 doi: 10.1016/j.brainres.2004.02.081 Baum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HF, Goggins WB, Zee BC, Cheng KF, Fong CY, Wong A, Mok H, Chow MS, Ho PC, Ip SP, Ho CS, Yu XW, Lai CY, Chan MH, Szeto S, Chan IH, Mok V (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28:110–113 doi: 10.1097/jcp.0b013e318160862c Bayer TA, Wirths O (2008) Review on the APP/PS1KI mouse model: intraneuronal Abeta accumulation triggers axonopathy, neuron loss and working memory impairment. Genes Brain Behav 7(Suppl 1):6–11 doi: 10.1007/s12177-009-9035-5 Yu MS, Lai CS, Ho YS, Zee SY, So KF, Yuen WH, Chang RCC (2007) Characterization of the effects of anti-aging medicine Fructus lycii on beta-amyloid peptide neurotoxicity. Int J Mol Med 20:261–268 doi: 10.1016/S0028-3932(00)00023-3 Shimazawa M, Ito Y, Inokuchi Y, Hara H (2007) Involvement of Double-Stranded RNA-Dependent Protein Kinase in ER Stress-Induced Retinal Neuron Damage. Invest Ophthalmol Vis Sci 48:3729–3736 doi: 10.1111/j.1471-4159.2007.04613.x Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21:372–381 doi: 10.1016/j.bmcl.2010.09.029 Rodrigues EB (2007) Inflammation in dry age-related macular degeneration. Ophthalmologica 221:143–152 doi: 10.1111/j.1600-0420.1996.tb00090.x Chiu K, Zhou Y, Yeung SC, Lok CK, Chan OO, Chang RCC, So KF, Chiu JF (2010) Up-regulation of crystallins is involved in the neuroprotective effect of wolfberry on survival of retinal ganglion cells in rat ocular hypertension model. J Cell Biochem 110:311–320 doi: 10.1242/jcs.070490 Spires TL, Hyman BT (2005) Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx 2:423–437 doi: 10.1602/neurorx.2.3.423 Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051–1063 doi: 10.2174/156720510790274491 Caroni P (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71:3–9 doi: 10.1083/jcb.200108057 Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356 doi: 10.1523/JNEUROSCI.0519-10.2010 Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang GF, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319 doi: 10.1016/S0006-8993(01)03058-X Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661 doi: 10.1016/S0002-9440(10)64893-6 Terwel D, Lasrado R, Snauwaert J, Vandeweert E, Van Haesendonck C, Borghgraef P, Van Leuven F (2005) Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice. J Biol Chem 280:3963–3973 doi: 10.1016/j.preteyeres.2003.10.003 Malamas MS, Robichaud A, Erdei J, Quagliato D, Solvibile W, Zhou P, Morris K, Turner J, Wagner E, Fan K, Olland A, Jacobsen S, Reinhart P, Riddell D, Pangalos M (2010) Design and synthesis of aminohydantoins as potent and selective human beta-secretase (BACE1) inhibitors with enhanced brain permeability. Bioorg Med Chem Lett 20:6597–6605 doi: 10.1001/archopht.122.4.598 Chang RCC, Suen KC, Ma CH, Elyaman W, Ng HK, Hugon J (2002a) Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2 alpha in neuronal degeneration. J Neurochem 83:1215–1225 doi: 10.1523/JNEUROSCI.3024-08.2008 Garcia MF, Gordon MN, Hutton M, Lewis J, McGowan E, Dickey CA, Morgan D, Arendash GW (2004) The retinal degeneration (rd) gene seriously impairs spatial cognitive performance in normal and Alzheimer’s transgenic mice. Neuroreport 15:73–77 doi: 10.1126/science.1072994 Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, Drobecq H, Clark A, Bonici B, Delacourte A, Benavides J, Schmitz C, Tremp G, Bayer TA, Benoit P, Pradier L (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289–1300 doi: 10.1016/S0002-9440(10)63388-3 Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, Bruehl C (2008) Amyloid beta oligomers (A beta(1–42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci 28:788–797 doi: 10.1016/S0166-4328(99)00037-6 Chan HC, Chang RCC, Koon-Ching Ip A, Chiu K, Yuen WH, Zee SY, So KF (2007) Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp Neurol 203:269–273 doi: 10.1016/j.biocel.2009.05.013 Ho YS, Yu MS, Yang XF, So KF, Yuen WH, Chang RCC (2010a) Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J Alzheimers Dis 19:813–827 doi: 10.1016/j.brainres.2005.04.016 Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL (2007) Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 48:2285–2289 doi: 10.1007/s00417-009-1060-3 Duyckaerts C, Potier MC, Delatour B (2008) Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:5–38 doi: 10.1007/s00401-007-0312-8 Eriksen JL, Janus CG (2007) Plaques, tangles, and memory loss in mouse models of neurodegeneration. Behav Genet 37:79–100 doi: 10.1167/iovs.08-2384 Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54(Suppl 1):S204–S217 doi: 10.1007/s10519-006-9118-z Frank S, Clavaguera F, Tolnay M (2008) Tauopathy models and human neuropathology: similarities and differences. Acta Neuropathol 115:39–53 doi: 10.1007/s00401-007-0291-9 Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, Prada C, Greenberg SM, Bacskai BJ, Frosch MP (2006) Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis 24:516–524 doi: 10.2353/ajpath.2009.090159 McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, Merges CA, Pease ME, Kerrigan DF, Ransom NL, Tahzib NG, Reitsamer HA, Levkovitch-Verbin H, Quigley HA, Zack DJ (2002) Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci 43:1077–1087 doi: 10.4061/2010/417314 Grundke-Iqbal I, Iqbal K, George L, Tung YC, Kim KS, Wisniewski HM (1989) Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc Natl Acad Sci USA 86:2853–2857 doi: 10.1073/pnas.86.8.2853 Guo L, Salt TE et al (2007) Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci USA 104:13444–13449 doi: 10.1002/glia.440030605 Gasparini L, Anthony Crowther R, Martin KR, Berg N, Coleman M, Goedert M, Spillantini MG (2009) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32:419–433 doi: 10.1097/IJG.0b013e318181284f Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S (2009) Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 50:793–800 doi: 10.1126/science.274.5284.99 Hung CH, Ho YS, Chang RCC (2010) Modulation of mitochondrial calcium as a pharmacological target for Alzheimer’s disease. Ageing Res Rev 9:447–456 doi: 10.1016/j.arr.2010.05.003 Pezzini A, Del Zotto E, Volonghi I, Giossi A, Costa P, Padovani A (2009) Cerebral amyloid angiopathy: a common cause of cerebral hemorrhage. Curr Med Chem 16:2498–2513 doi: 10.1016/0006-8993(93)90695-J Yin H, Chen L, Chen X, Liu X (2008) Soluble amyloid beta oligomers may contribute to apoptosis of retinal ganglion cells in glaucoma. Med Hypotheses 71:77–80 doi: 10.1016/j.neuroimage.2010.06.020 LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509 doi: 10.1016/j.neurobiolaging.2006.08.013 Li M, Chen L, Lee DH, Yu LC, Zhang Y (2007) The role of intracellular amyloid beta in Alzheimer’s disease. Prog Neurobiol 83:131–139 doi: 10.1523/JNEUROSCI.1357-09.2009 Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, Rizzuto R, Hajnoczky G (2008) Bidirectional Ca2+−dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA 105:20728–20733 doi: 10.1523/JNEUROSCI.4771-07.2008 Luibl V, Isas JM, Kayed R, Glabe CG, Langen R, Chen J (2006) Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest 116:378–385 doi: 10.1016/0197-4580(96)00010-3 Moechars D, Dewachter I, Lorent K, Reversé D, Baekelandt V, Naidu A, Tesseur I, Spittaels K, Haute CV, Checler F, Godaux E, Cordell B, Van Leuven F (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274:6483–6492 doi: 10.1074/jbc.M409876200 Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985 doi: 10.1038/35050116 Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92:905–909 doi: 10.1038/416535a Ning A, Cui J, To E, Ashe KH, Matsubara J (2008) Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci 49:5136–5143 doi: 10.1016/j.clineuro.2007.10.011 Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, Chen Y, Zhang K, Ambati BK, Baffi JZ, Ambati J (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci USA 103:2328–2333 doi: 10.1073/pnas.0408835103 Ding JD, Lin J, Mace BE, Herrmann R, Sullivan P, Bowes Rickman C (2008) Targeting age-related macular degeneration with Alzheimer’s disease based immunotherapies: anti-amyloid-beta antibody attenuates pathologies in an age-related macular degeneration mouse model. Vision Res 48:339–345 doi: 10.1172/JCI24635 Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X (2010) A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer’s disease. J Alz Dis 20(Suppl 2):S401–S412 doi: 10.1016/j.neuron.2008.10.047 Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002a) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539 doi: 10.1016/S0896-6273(03)00434-3 Hintersteiner M, Enz A, Frey P, Jaton AL, Kinzy W, Kneuer R, Neumann U, Rudin M, Staufenbiel M, Stoeckli M, Wiederhold KH, Gremlich HU (2005) In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat Biotechnol 23:577–583 doi: 10.1073/pnas.0808953105 Scattoni ML, Gasparini L, Alleva E, Goedert M, Calamandrei G, Spillantini MG (2010) Early behavioural markers of disease in P301S tau transgenic mice. Behav Brain Res 208:250–257 doi: 10.1146/annurev.neuro.21.1.479 Price DL, Sisodia SS, Borchelt DR (1998a) Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282:1079–1083 doi: 10.1126/science.282.5391.1079 Gau JT, Steinhilb ML, Kao TC, D’Amato CJ, Gaut JR, Frey KA, Turner RS (2002) Stable beta-secretase activity and presynaptic cholinergic markers during progressive central nervous system amyloidogenesis in Tg2576 mice. Am J Pathol 160:731–738 doi: 10.1167/iovs.06-1029 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chiu, K | en_HK |
dc.contributor.author | Chan, TF | en_HK |
dc.contributor.author | Wu, A | en_HK |
dc.contributor.author | Leung, IYP | en_HK |
dc.contributor.author | So, KF | en_HK |
dc.contributor.author | Chang, RCC | en_HK |
dc.date.accessioned | 2011-07-27T01:25:51Z | - |
dc.date.available | 2011-07-27T01:25:51Z | - |
dc.date.issued | 2012 | en_HK |
dc.identifier.citation | Age, 2012, v. 34 n. 3, p. 633-649 | en_HK |
dc.identifier.issn | 0161-9152 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/135016 | - |
dc.description.abstract | Alzheimer's disease (AD) is an age-related progressive neurodegenerative disease commonly found among elderly. In addition to cognitive and behavioral deficits, vision abnormalities are prevalent in AD patients. Recent studies investigating retinal changes in AD double-transgenic mice have shown altered processing of amyloid precursor protein and accumulation of β-amyloid peptides in neurons of retinal ganglion cell layer (RGCL) and inner nuclear layer (INL). Apoptotic cells were also detected in the RGCL. Thus, the pathophysiological changes of retinas in AD patients are possibly resembled by AD transgenic models. The retina is a simple model of the brain in the sense that some pathological changes and therapeutic strategies from the retina may be observed or applicable to the brain. Furthermore, it is also possible to advance our understanding of pathological mechanisms in other retinal degenerative diseases. Therefore, studying AD-related retinal degeneration is a promising way for the investigation on (1) AD pathologies and therapies that would eventually benefit the brain and (2) cellular mechanisms in other retinal degenerations such as glaucoma and age-related macular degeneration. This review will highlight the efforts on retinal degenerative research using AD transgenic mouse models. © 2011 The Author(s). | en_HK |
dc.language | eng | en_US |
dc.publisher | Springer Netherlands. The Journal's web site is located at http://www.springerlink.com/content/0161-9152/ | en_HK |
dc.relation.ispartof | Age | en_HK |
dc.rights | The Author(s) | en_US |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | en_US |
dc.subject | Age-related macular degeneration | en_HK |
dc.subject | Alzheimer's disease | en_HK |
dc.subject | Glaucoma | en_HK |
dc.subject | Inner nuclear layer | en_HK |
dc.subject | Neurodegeneration | en_HK |
dc.subject | Retina | en_HK |
dc.subject | Retinal ganglion cells | en_HK |
dc.title | Neurodegeneration of the retina in mouse models of Alzheimer's disease: what can we learn from the retina? | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4551/resserv?sid=springerlink&genre=article&atitle=Neurodegeneration of the retina in mouse models of Alzheimer’s disease: what can we learn from the retina?&title=AGE&issn=01619152&date=2011-05-11& spage=1&authors=Kin Chiu, Tin-Fung Chan, Andrew Wu, <i>et al.</i> | en_US |
dc.identifier.email | So, KF:hrmaskf@hkucc.hku.hk | en_HK |
dc.identifier.email | Chang, RCC:rccchang@hkucc.hku.hk | en_HK |
dc.identifier.authority | So, KF=rp00329 | en_HK |
dc.identifier.authority | Chang, RCC=rp00470 | en_HK |
dc.description.nature | published_or_final_version | en_US |
dc.identifier.doi | 10.1007/s11357-011-9260-2 | en_HK |
dc.identifier.pmid | 21559868 | - |
dc.identifier.pmcid | PMC3337933 | - |
dc.identifier.scopus | eid_2-s2.0-84863717137 | en_HK |
dc.identifier.hkuros | 186973 | en_US |
dc.identifier.hkuros | 199701 | - |
dc.relation.references | Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, Atzori C, Migheli A, Crowther RA, Ghetti B, Spillantini MG, Goedert M (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22:9340–9351 | en_US |
dc.relation.references | Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431 | en_US |
dc.relation.references | doi: 10.1016/S0002-9394(02)01624-0 | en_US |
dc.relation.references | Anderson DH, Talaga KC, Rivest AJ, Barron E, Hageman GS, Johnson LV (2004) Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78:243–256 | en_US |
dc.relation.references | doi: 10.1016/j.exer.2003.10.011 | en_US |
dc.relation.references | Arendash GW, Lewis J, Leighty RE, McGowan E, Cracchiolo JR, Hutton M, Garcia MF (2004) Multi-metric behavioral comparison of APPsw and P301L models for Alzheimer’s disease: linkage of poorer cognitive performance to tau pathology in forebrain. Brain Res 1012:29–41 | en_US |
dc.relation.references | doi: 10.1016/j.brainres.2004.02.081 | en_US |
dc.relation.references | Bakalash S, Kipnis J, Yoles E, Schwartz M (2002) Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. Invest Ophthalmol Vis Sci 43:2648–2653 | en_US |
dc.relation.references | Baum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HF, Goggins WB, Zee BC, Cheng KF, Fong CY, Wong A, Mok H, Chow MS, Ho PC, Ip SP, Ho CS, Yu XW, Lai CY, Chan MH, Szeto S, Chan IH, Mok V (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28:110–113 | en_US |
dc.relation.references | doi: 10.1097/jcp.0b013e318160862c | en_US |
dc.relation.references | Bayer TA, Wirths O (2008) Review on the APP/PS1KI mouse model: intraneuronal Abeta accumulation triggers axonopathy, neuron loss and working memory impairment. Genes Brain Behav 7(Suppl 1):6–11 | en_US |
dc.relation.references | doi: 10.1007/s12177-009-9035-5 | en_US |
dc.relation.references | doi: 10.1146/annurev.genet.32.1.461 | en_US |
dc.relation.references | Rizzo M, Anderson SW, Dawson J, Nawrot M (2000) Vision and cognition in Alzheimer’s disease. Neuropsychologia 38:1157–1169 | en_US |
dc.relation.references | Yu MS, Lai CS, Ho YS, Zee SY, So KF, Yuen WH, Chang RCC (2007) Characterization of the effects of anti-aging medicine Fructus lycii on beta-amyloid peptide neurotoxicity. Int J Mol Med 20:261–268 | en_US |
dc.relation.references | doi: 10.1016/S0028-3932(00)00023-3 | en_US |
dc.relation.references | Shimazawa M, Ito Y, Inokuchi Y, Hara H (2007) Involvement of Double-Stranded RNA-Dependent Protein Kinase in ER Stress-Induced Retinal Neuron Damage. Invest Ophthalmol Vis Sci 48:3729–3736 | en_US |
dc.relation.references | doi: 10.1111/j.1471-4159.2007.04613.x | en_US |
dc.relation.references | Carelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23:53–89 | en_US |
dc.relation.references | Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21:372–381 | en_US |
dc.relation.references | doi: 10.1016/j.bmcl.2010.09.029 | en_US |
dc.relation.references | doi: 10.1007/s00281-008-0112-9 | en_US |
dc.relation.references | Walsh DT, Montero RM, Bresciani LG, Jen AY, Leclercq PD, Saunders D, EL-Amir AN, Gbadamoshi L, Gentleman SM, Jen LS (2002b) Amyloid-beta peptide is toxic to neurons in vivo via indirect mechanisms. Neurobiol Dis 10:20–27 | en_US |
dc.relation.references | Rodrigues EB (2007) Inflammation in dry age-related macular degeneration. Ophthalmologica 221:143–152 | en_US |
dc.relation.references | doi: 10.1111/j.1600-0420.1996.tb00090.x | en_US |
dc.relation.references | Seo AY, Joseph A-M, Dutta D, Hwang JCY, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123:2533–2542 | en_US |
dc.relation.references | Chiu K, Zhou Y, Yeung SC, Lok CK, Chan OO, Chang RCC, So KF, Chiu JF (2010) Up-regulation of crystallins is involved in the neuroprotective effect of wolfberry on survival of retinal ganglion cells in rat ocular hypertension model. J Cell Biochem 110:311–320 | en_US |
dc.relation.references | doi: 10.1242/jcs.070490 | en_US |
dc.relation.references | Spires TL, Hyman BT (2005) Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx 2:423–437 | en_US |
dc.relation.references | doi: 10.1602/neurorx.2.3.423 | en_US |
dc.relation.references | doi: 10.1007/s10571-009-9419-x | en_US |
dc.relation.references | Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051–1063 | en_US |
dc.relation.references | doi: 10.2174/156720510790274491 | en_US |
dc.relation.references | doi: 10.1016/j.visres.2007.07.025 | en_US |
dc.relation.references | Caroni P (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71:3–9 | en_US |
dc.relation.references | doi: 10.1083/jcb.200108057 | en_US |
dc.relation.references | doi: 10.1016/j.jalz.2007.04.381 | en_US |
dc.relation.references | doi: 10.1016/j.tins.2010.05.004 | en_US |
dc.relation.references | doi: 10.1016/j.jns.2006.02.009 | en_US |
dc.relation.references | doi: 10.1167/iovs.06-0573 | en_US |
dc.relation.references | doi: 10.1006/nbdi.2002.0485 | en_US |
dc.relation.references | doi: 10.1016/j.neurobiolaging.2009.03.002 | en_US |
dc.relation.references | Wan J, Fu AK, Ip FC, Ng HK, Hugon J, Page G, Wang JH, Lai KO, Wu Z, Ip NY (2010) Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: implications in Alzheimer’s disease. J Neurosci 30:6873–6881 | en_US |
dc.relation.references | Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356 | en_US |
dc.relation.references | doi: 10.1523/JNEUROSCI.0519-10.2010 | en_US |
dc.relation.references | Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA, Trommer BL (2002) Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140 | en_US |
dc.relation.references | Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang GF, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319 | en_US |
dc.relation.references | doi: 10.1016/S0006-8993(01)03058-X | en_US |
dc.relation.references | Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661 | en_US |
dc.relation.references | doi: 10.1016/S0002-9440(10)64893-6 | en_US |
dc.relation.references | doi: 10.1016/S0165-0270(96)00121-5 | en_US |
dc.relation.references | Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103 | en_US |
dc.relation.references | Terwel D, Lasrado R, Snauwaert J, Vandeweert E, Van Haesendonck C, Borghgraef P, Van Leuven F (2005) Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice. J Biol Chem 280:3963–3973 | en_US |
dc.relation.references | doi: 10.1016/j.preteyeres.2003.10.003 | en_US |
dc.relation.references | doi: 10.2741/1172 | en_US |
dc.relation.references | doi: 10.1074/jbc.M404751200 | en_US |
dc.relation.references | Malamas MS, Robichaud A, Erdei J, Quagliato D, Solvibile W, Zhou P, Morris K, Turner J, Wagner E, Fan K, Olland A, Jacobsen S, Reinhart P, Riddell D, Pangalos M (2010) Design and synthesis of aminohydantoins as potent and selective human beta-secretase (BACE1) inhibitors with enhanced brain permeability. Bioorg Med Chem Lett 20:6597–6605 | en_US |
dc.relation.references | doi: 10.1001/archopht.122.4.598 | en_US |
dc.relation.references | Ho YS, Yu MS, Yik SY, So KF, Yuen WH, Chang RCC (2009) Polysaccharides from wolfberry antagonizes glutamate excitotoxicity in rat cortical neurons. Cell Mol Neurobiol 29:1233–1244 | en_US |
dc.relation.references | Chang RCC, Suen KC, Ma CH, Elyaman W, Ng HK, Hugon J (2002a) Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2 alpha in neuronal degeneration. J Neurochem 83:1215–1225 | en_US |
dc.relation.references | doi: 10.1523/JNEUROSCI.3024-08.2008 | en_US |
dc.relation.references | Chang RCC, Wong AKY, Ng HK, Hugon J (2002b) Phosphorylation of eukaryotic initiation factor-2 alpha (eIF2 alpha) is associated with neuronal degeneration in Alzheimer’s disease. Neuroreport 13:2429–2432 | en_US |
dc.relation.references | Cordeiro MF, Guo L, Coxon KM, Duggan J, Nizari S, Normando EM, Sensi SL, Sillito AM, Fitzke FW, Salt TE, Moss SE (2010) Imaging multiple phases of neurodegeneration: a novel approach to assessing cell death in vivo. Cell Death Dis 1:e3 | en_US |
dc.relation.references | McKinnon SJ (2003) Glaucoma: ocular Alzheimer’s disease? Front Biosci 8:s1140–s1156 | en_US |
dc.relation.references | Garcia MF, Gordon MN, Hutton M, Lewis J, McGowan E, Dickey CA, Morgan D, Arendash GW (2004) The retinal degeneration (rd) gene seriously impairs spatial cognitive performance in normal and Alzheimer’s transgenic mice. Neuroreport 15:73–77 | en_US |
dc.relation.references | doi: 10.1126/science.1072994 | en_US |
dc.relation.references | Liu X, Hajnoczky G (2009) Ca2+−dependent regulation of mitochondrial dynamics by the Miro–Milton complex. Int J Biochem Cell Biol 41:1972–1976 | en_US |
dc.relation.references | Ho YS, So KF, Chang RCC (2010b) Anti-aging herbal medicine—how and why can they be used in aging-associated neurodegenerative diseases? Ageing Res Rev 9:354–362 | en_US |
dc.relation.references | Dutescu RM, Li QX, Crowston J, Masters CL, Baird PN, Culvenor JG (2009) Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer’s disease. Graefes Arch Clin Exp Ophthalmol 247:1213–1221 | en_US |
dc.relation.references | Gruart A, Lopez-Ramos JC, Munoz MD, Delgado-Garcia JM (2008) Aged wild-type and APP, PS1, and APP + PS1 mice present similar deficits in associative learning and synaptic plasticity independent of amyloid load. Neurobiol Dis 30:439–450 | en_US |
dc.relation.references | Yoshida T, Ohno-Matsui K, Ichinose S, Sato T, Iwata N, Saido TC, Hisatomi T, Mochizuki M, Morita I (2005) The potential role of amyloid beta in the pathogenesis of age-related macular degeneration. J Clin Invest 115:2793–2800 | en_US |
dc.relation.references | Suen KC, Yu MS, So KF, Chang RCC, Hugon J (2003) Upstream signaling pathways leading to the activation of double-stranded RNA-dependent serine/threonine protein kinase in {beta}-amyloid peptide neurotoxicity. J Biol Chem 278:49819–49827 | en_US |
dc.relation.references | Johnson LV, Leitner WP, Rivest AJ, Staples MK, Radeke MJ, Anderson DH (2002) The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci USA 99:11830–11835 | en_US |
dc.relation.references | Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, Carlson GA, Younkin SG, Ashe KH (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22:1858–1867 | en_US |
dc.relation.references | Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, Drobecq H, Clark A, Bonici B, Delacourte A, Benavides J, Schmitz C, Tremp G, Bayer TA, Benoit P, Pradier L (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289–1300 | en_US |
dc.relation.references | doi: 10.1016/S0002-9440(10)63388-3 | en_US |
dc.relation.references | Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, Bruehl C (2008) Amyloid beta oligomers (A beta(1–42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci 28:788–797 | en_US |
dc.relation.references | doi: 10.1016/S0166-4328(99)00037-6 | en_US |
dc.relation.references | Chan HC, Chang RCC, Koon-Ching Ip A, Chiu K, Yuen WH, Zee SY, So KF (2007) Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp Neurol 203:269–273 | en_US |
dc.relation.references | doi: 10.1016/j.biocel.2009.05.013 | en_US |
dc.relation.references | doi: 10.1016/j.expneurol.2006.05.031 | en_US |
dc.relation.references | Chiu K, Lam TT, Ying Li WW, Caprioli J, Kwong JM (2005) Calpain and N-methyl-d-aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Res 1046:207–215 | en_US |
dc.relation.references | Ho YS, Yu MS, Yang XF, So KF, Yuen WH, Chang RCC (2010a) Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J Alzheimers Dis 19:813–827 | en_US |
dc.relation.references | doi: 10.1016/j.brainres.2005.04.016 | en_US |
dc.relation.references | doi: 10.1073/pnas.192203399 | en_US |
dc.relation.references | Muyllaert D, Kremer A, Jaworski T, Borghgraef P, Devijver H, Croes S, Dewachter I, Van Leuven F (2008) Glycogen synthase kinase-3beta, or a link between amyloid and tau pathology? Genes Brain Behav 7(Suppl 1):57–66 | en_US |
dc.relation.references | Kong GY, Van Bergen NJ, Trounce IA, Crowston JG (2009) Mitochondrial dysfunction and glaucoma. J Glaucoma 18:93–100 | en_US |
dc.relation.references | Ron B, Elizabeth J, Kathryn Z-G, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alz Dement 3:186–191 | en_US |
dc.relation.references | Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT, Hageman GS, Dean M, Allikmets R, AMD Genetics Clinical Study Group (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458–462 | en_US |
dc.relation.references | Chiu K, Chang RCC, So KF (2007) Intravitreous injection for establishing ocular diseases model. J Vis Exp 8:313 | en_US |
dc.relation.references | Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL (2007) Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 48:2285–2289 | en_US |
dc.relation.references | doi: 10.1007/s00417-009-1060-3 | en_US |
dc.relation.references | Liu B, Rasool S, Yang Z, Glabe CG, Schreiber SS, Ge J, Tan Z (2009) Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer’s transgenic mice. Am J Pathol 175:2099–2110 | en_US |
dc.relation.references | Duyckaerts C, Potier MC, Delatour B (2008) Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:5–38 | en_US |
dc.relation.references | doi: 10.1007/s00401-007-0312-8 | en_US |
dc.relation.references | Eriksen JL, Janus CG (2007) Plaques, tangles, and memory loss in mouse models of neurodegeneration. Behav Genet 37:79–100 | en_US |
dc.relation.references | doi: 10.1167/iovs.08-2384 | en_US |
dc.relation.references | doi: 10.1016/j.preteyeres.2004.05.001 | en_US |
dc.relation.references | Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54(Suppl 1):S204–S217 | en_US |
dc.relation.references | doi: 10.1007/s10519-006-9118-z | en_US |
dc.relation.references | Nakada T, Matsuzawa H, Igarashi H, Fujii Y, Kwee IL (2008) In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system. J Neuroimaging 18:125–129 | en_US |
dc.relation.references | Frank S, Clavaguera F, Tolnay M (2008) Tauopathy models and human neuropathology: similarities and differences. Acta Neuropathol 115:39–53 | en_US |
dc.relation.references | doi: 10.1007/s00401-007-0291-9 | en_US |
dc.relation.references | doi: 10.1002/ana.20009 | en_US |
dc.relation.references | Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, Prada C, Greenberg SM, Bacskai BJ, Frosch MP (2006) Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis 24:516–524 | en_US |
dc.relation.references | doi: 10.2353/ajpath.2009.090159 | en_US |
dc.relation.references | Patel M, Chan CC (2008) Immunopathological aspects of age-related macular degeneration. Semin Immunopathol 30:97–110 | en_US |
dc.relation.references | McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, Merges CA, Pease ME, Kerrigan DF, Ransom NL, Tahzib NG, Reitsamer HA, Levkovitch-Verbin H, Quigley HA, Zack DJ (2002) Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci 43:1077–1087 | en_US |
dc.relation.references | doi: 10.4061/2010/417314 | en_US |
dc.relation.references | doi: 10.1016/j.mehy.2008.01.030 | en_US |
dc.relation.references | doi: 10.1016/j.arr.2009.10.001 | en_US |
dc.relation.references | doi: 10.1016/j.nbd.2006.08.017 | en_US |
dc.relation.references | doi: 10.1159/000099293 | en_US |
dc.relation.references | doi: 10.1038/ng1750 | en_US |
dc.relation.references | doi: 10.1111/j.1552-6569.2007.00179.x | en_US |
dc.relation.references | Grundke-Iqbal I, Iqbal K, George L, Tung YC, Kim KS, Wisniewski HM (1989) Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc Natl Acad Sci USA 86:2853–2857 | en_US |
dc.relation.references | doi: 10.1073/pnas.86.8.2853 | en_US |
dc.relation.references | Guo L, Salt TE et al (2007) Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci USA 104:13444–13449 | en_US |
dc.relation.references | doi: 10.1002/glia.440030605 | en_US |
dc.relation.references | doi: 10.1073/pnas.0703707104 | en_US |
dc.relation.references | doi: 10.1159/000047976 | en_US |
dc.relation.references | Mey J, Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602:304–317 | en_US |
dc.relation.references | Guo L, Duggan J, Cordeiro MF (2010) Alzheimer’s disease and retinal neurodegeneration. Curr Alzheimer Res 7:3–14 | en_US |
dc.relation.references | Gasparini L, Anthony Crowther R, Martin KR, Berg N, Coleman M, Goedert M, Spillantini MG (2009) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32:419–433 | en_US |
dc.relation.references | doi: 10.1097/IJG.0b013e318181284f | en_US |
dc.relation.references | Hedges TR 3rd, Perez Galves R, Speigelman D, Barbas NR, Peli E, Yardley CJ (1996) Retinal nerve fiber layer abnormalities in Alzheimer’s disease. Acta Ophthalmol Scand 74:271–275 | en_US |
dc.relation.references | Tanghe A, Termont A, Merchiers P, Schilling S, Demuth HU, Scrocchi L, Van Leuven F, Griffioen G, Van Dooren T (2010) Pathological Hallmarks, Clinical Parallels, and Value for Drug Testing in Alzheimer’s Disease of the APP[V717I] London Transgenic Mouse Model. Int J Alzheimers Dis doi:10.4061/2010/417314 | en_US |
dc.relation.references | Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102 | en_US |
dc.relation.references | Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S (2009) Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 50:793–800 | en_US |
dc.relation.references | doi: 10.1126/science.274.5284.99 | en_US |
dc.relation.references | Hung CH, Ho YS, Chang RCC (2010) Modulation of mitochondrial calcium as a pharmacological target for Alzheimer’s disease. Ageing Res Rev 9:447–456 | en_US |
dc.relation.references | doi: 10.1016/j.arr.2010.05.003 | en_US |
dc.relation.references | Valenti DA (2010) Alzheimer’s disease: visual system review. Optometry 81:12–21 | en_US |
dc.relation.references | Ji JZ, Elyaman W, Yip HK, Lee VW, Yick LW, Hugon J, So KF (2004) CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: the possible involvement of STAT3 pathway. Eur J Neurosci 19:265–272 | en_US |
dc.relation.references | Suo Z, Cox AA, Bartelli N, Rasul I, Festoff BW, Premont RT, Arendash GW (2007) GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiol Aging 28:1873–1888 | en_US |
dc.relation.references | Pezzini A, Del Zotto E, Volonghi I, Giossi A, Costa P, Padovani A (2009) Cerebral amyloid angiopathy: a common cause of cerebral hemorrhage. Curr Med Chem 16:2498–2513 | en_US |
dc.relation.references | doi: 10.1016/0006-8993(93)90695-J | en_US |
dc.relation.references | doi: 10.1111/j.0953-816X.2003.03107.x | en_US |
dc.relation.references | doi: 10.1038/nbt1085 | en_US |
dc.relation.references | Mendez MF, Mendez MA, Martin R, Smyth KA, Whitehouse PJ (1990) Complex visual disturbances in Alzheimer’s disease. Neurology 40:439–443 | en_US |
dc.relation.references | Ju WK, Liu Q, Kim KY, Crowston JG, Lindsey JD, Agarwal N, Ellisman MH, Perkins GA, Weinreb RN (2007) Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC-5 cells. Invest Ophthalmol Vis Sci 48:2145–2151 | en_US |
dc.relation.references | Yin H, Chen L, Chen X, Liu X (2008) Soluble amyloid beta oligomers may contribute to apoptosis of retinal ganglion cells in glaucoma. Med Hypotheses 71:77–80 | en_US |
dc.relation.references | doi: 10.1016/j.neuroimage.2010.06.020 | en_US |
dc.relation.references | Roque RS, Caldwell RB (1990) Müller cell changes precede vascularization of the pigment epithelium in the dystrophic rat retina. Glia 3:464–475 | en_US |
dc.relation.references | LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509 | en_US |
dc.relation.references | doi: 10.1016/j.neurobiolaging.2006.08.013 | en_US |
dc.relation.references | doi: 10.1038/nrn2168 | en_US |
dc.relation.references | Le Cudennec C, Faure A, Ly M, Delatour B (2008) One-year longitudinal evaluation of sensorimotor functions in APP751SL transgenic mice. Genes Brain Behav 7(Suppl 1):83–91 | en_US |
dc.relation.references | Yu MS, Ho YS, So KF, Yuen WH, Chang RCC (2006) Cytoprotective effects of Lycium barbarum against reducing stress on endoplasmic reticulum. Int J Mol Med 17:1157–1161 | en_US |
dc.relation.references | Li M, Chen L, Lee DH, Yu LC, Zhang Y (2007) The role of intracellular amyloid beta in Alzheimer’s disease. Prog Neurobiol 83:131–139 | en_US |
dc.relation.references | doi: 10.1523/JNEUROSCI.1357-09.2009 | en_US |
dc.relation.references | Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, Rizzuto R, Hajnoczky G (2008) Bidirectional Ca2+−dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA 105:20728–20733 | en_US |
dc.relation.references | doi: 10.1523/JNEUROSCI.4771-07.2008 | en_US |
dc.relation.references | doi: 10.1016/j.pneurobio.2007.08.002 | en_US |
dc.relation.references | King DL, Arendash GW, Crawford F, Sterk T, Menendez J, Mullan MJ (1999) Progressive and gender-dependent cognitive impairment in the APP(SW) transgenic mouse model for Alzheimer’s disease. Behav Brain Res 103:145–162 | en_US |
dc.relation.references | Luibl V, Isas JM, Kayed R, Glabe CG, Langen R, Chen J (2006) Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest 116:378–385 | en_US |
dc.relation.references | doi: 10.1016/0197-4580(96)00010-3 | en_US |
dc.relation.references | doi: 10.1172/JCI25843 | en_US |
dc.relation.references | Bayer AU, Ferrari F, Erb C (2002) High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol 47:165–168 | en_US |
dc.relation.references | Moechars D, Dewachter I, Lorent K, Reversé D, Baekelandt V, Naidu A, Tesseur I, Spittaels K, Haute CV, Checler F, Godaux E, Cordell B, Van Leuven F (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274:6483–6492 | en_US |
dc.relation.references | doi: 10.1074/jbc.M409876200 | en_US |
dc.relation.references | doi: 10.1074/jbc.274.10.6483 | en_US |
dc.relation.references | Wostyn P, Audenaert K, De Deyn PP (2008) Alzheimer’s disease-related changes in diseases characterized by elevation of intracranial or intraocular pressure. Clin Neurol Neurosurg 110:101–109 | en_US |
dc.relation.references | Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985 | en_US |
dc.relation.references | doi: 10.1038/35050116 | en_US |
dc.relation.references | Blanks JC, Torigoe Y, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging 17:377–384 | en_US |
dc.relation.references | Morin PJ, Abraham CR, Amaratunga A, Johnson RJ, Huber G, Sandell JH, Fine RE (1993) Amyloid precursor protein is synthesized by retinal ganglion cells, rapidly transported to the optic nerve plasma membrane and nerve terminals, and metabolized. J Neurochem 61:464–473 | en_US |
dc.relation.references | Tamura H, Kawakami H, Kanamoto T, Kato T, Yokoyama T, Sasaki K, Izumi Y, Matsumoto M, Mishima HK (2006) High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neurol Sci 246:79–83 | en_US |
dc.relation.references | Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92:905–909 | en_US |
dc.relation.references | doi: 10.1038/416535a | en_US |
dc.relation.references | doi: 10.2174/092986709788682047 | en_US |
dc.relation.references | doi: 10.1111/j.1471-4159.1993.tb02147.x | en_US |
dc.relation.references | Margrain TH, Boulton M, Marshall J, Sliney DH (2004) Do blue light filters confer protection against age-related macular degeneration? Prog Retin Eye Res 23:523–531 | en_US |
dc.relation.references | Ning A, Cui J, To E, Ashe KH, Matsubara J (2008) Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci 49:5136–5143 | en_US |
dc.relation.references | doi: 10.1016/j.clineuro.2007.10.011 | en_US |
dc.relation.references | doi: 10.1167/iovs.08-1849 | en_US |
dc.relation.references | Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, Chen Y, Zhang K, Ambati BK, Baffi JZ, Ambati J (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci USA 103:2328–2333 | en_US |
dc.relation.references | doi: 10.1073/pnas.0408835103 | en_US |
dc.relation.references | Ding JD, Lin J, Mace BE, Herrmann R, Sullivan P, Bowes Rickman C (2008) Targeting age-related macular degeneration with Alzheimer’s disease based immunotherapies: anti-amyloid-beta antibody attenuates pathologies in an age-related macular degeneration mouse model. Vision Res 48:339–345 | en_US |
dc.relation.references | doi: 10.1172/JCI24635 | en_US |
dc.relation.references | O’Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, Lichtenthaler SF, Hébert SS, De Strooper B, Haass C, Bennett DA, Vassar R (2008) Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 60:988–1009 | en_US |
dc.relation.references | Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X (2010) A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer’s disease. J Alz Dis 20(Suppl 2):S401–S412 | en_US |
dc.relation.references | doi: 10.1016/j.neuron.2008.10.047 | en_US |
dc.relation.references | Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421 | en_US |
dc.relation.references | Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002a) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539 | en_US |
dc.relation.references | doi: 10.1016/S0896-6273(03)00434-3 | en_US |
dc.relation.references | Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901 | en_US |
dc.relation.references | Chiu K, Chan HC, Yeung SC, Yuen WH, Zee SY, Chang RCC, So KF (2009) Modulation of microglia by wolfberry on the survival of retinal ganglion cells in a rat ocular hypertension model. J Ocul Biol Dis Infor 2:127–136 | en_US |
dc.relation.references | Zahs KR, Ashe KH (2010) ‘Too much good news’—are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer’s disease? Trends Neurosci 33:381–389 | en_US |
dc.relation.references | Hintersteiner M, Enz A, Frey P, Jaton AL, Kinzy W, Kneuer R, Neumann U, Rudin M, Staufenbiel M, Stoeckli M, Wiederhold KH, Gremlich HU (2005) In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat Biotechnol 23:577–583 | en_US |
dc.relation.references | doi: 10.1073/pnas.0808953105 | en_US |
dc.relation.references | Ohyagi Y, Asahara H, Chui DH, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, Ikezoe K, Furuya H, Kawarabayashi T, Shoji M, Checler F, Iwaki T, Makifuchi T, Takeda K, Kira J, Tabira T (2005) Intracellular Aß42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer’s disease. FASEB J 19:255–257 | en_US |
dc.relation.references | Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 102:1095–1104 | en_US |
dc.relation.references | Price DL, Sisodia SS (1998) Mutant genes in familial Alzheimer’s disease and transgenic models. Annu Rev Neurosci 21:479–505 | en_US |
dc.relation.references | Scattoni ML, Gasparini L, Alleva E, Goedert M, Calamandrei G, Spillantini MG (2010) Early behavioural markers of disease in P301S tau transgenic mice. Behav Brain Res 208:250–257 | en_US |
dc.relation.references | doi: 10.1146/annurev.neuro.21.1.479 | en_US |
dc.relation.references | Price DL, Sisodia SS, Borchelt DR (1998a) Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282:1079–1083 | en_US |
dc.relation.references | doi: 10.1126/science.282.5391.1079 | en_US |
dc.relation.references | Gau JT, Steinhilb ML, Kao TC, D’Amato CJ, Gaut JR, Frey KA, Turner RS (2002) Stable beta-secretase activity and presynaptic cholinergic markers during progressive central nervous system amyloidogenesis in Tg2576 mice. Am J Pathol 160:731–738 | en_US |
dc.relation.references | doi: 10.1167/iovs.06-1029 | en_US |
dc.relation.references | Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122:598–614 | en_US |
dc.relation.references | Price DL, Tanzi RE, Borchelt DR, Sisodia SS (1998b) Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet 32:461–493 | en_US |
dc.identifier.volume | 34 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 1 | en_HK |
dc.identifier.spage | 633 | - |
dc.identifier.epage | 17 | en_HK |
dc.identifier.epage | 649 | - |
dc.identifier.eissn | 1574-4647 | en_US |
dc.identifier.isi | WOS:000303507400010 | - |
dc.publisher.place | Netherlands | en_HK |
dc.description.other | Springer Open Choice, 21 Feb 2012 | en_US |
dc.identifier.scopusauthorid | Chiu, K=15076970500 | en_HK |
dc.identifier.scopusauthorid | Chan, TF=37118537600 | en_HK |
dc.identifier.scopusauthorid | Wu, A=37119578800 | en_HK |
dc.identifier.scopusauthorid | Leung, IYP=37119139600 | en_HK |
dc.identifier.scopusauthorid | So, KF=34668391300 | en_HK |
dc.identifier.scopusauthorid | Chang, RCC=7403713410 | en_HK |
dc.identifier.citeulike | 9313839 | - |