File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Neurodegeneration of the retina in mouse models of Alzheimer's disease: what can we learn from the retina?
  • Basic View
  • Metadata View
  • XML View
TitleNeurodegeneration of the retina in mouse models of Alzheimer's disease: what can we learn from the retina?
 
AuthorsChiu, K1
Chan, TF1
Wu, A1
Leung, IYP1
So, KF1
Chang, RCC1
 
KeywordsAge-related macular degeneration
Alzheimer's disease
Glaucoma
Inner nuclear layer
Neurodegeneration
Retina
Retinal ganglion cells
 
Issue Date2012
 
PublisherSpringer Netherlands. The Journal's web site is located at http://www.springerlink.com/content/0161-9152/
 
CitationAge, 2012, v. 34 n. 3, p. 633-649 [How to Cite?]
DOI: http://dx.doi.org/10.1007/s11357-011-9260-2
 
AbstractAlzheimer's disease (AD) is an age-related progressive neurodegenerative disease commonly found among elderly. In addition to cognitive and behavioral deficits, vision abnormalities are prevalent in AD patients. Recent studies investigating retinal changes in AD double-transgenic mice have shown altered processing of amyloid precursor protein and accumulation of β-amyloid peptides in neurons of retinal ganglion cell layer (RGCL) and inner nuclear layer (INL). Apoptotic cells were also detected in the RGCL. Thus, the pathophysiological changes of retinas in AD patients are possibly resembled by AD transgenic models. The retina is a simple model of the brain in the sense that some pathological changes and therapeutic strategies from the retina may be observed or applicable to the brain. Furthermore, it is also possible to advance our understanding of pathological mechanisms in other retinal degenerative diseases. Therefore, studying AD-related retinal degeneration is a promising way for the investigation on (1) AD pathologies and therapies that would eventually benefit the brain and (2) cellular mechanisms in other retinal degenerations such as glaucoma and age-related macular degeneration. This review will highlight the efforts on retinal degenerative research using AD transgenic mouse models. © 2011 The Author(s).
 
ISSN0161-9152
2012 Impact Factor: 4.084
2012 SCImago Journal Rankings: 0.661
 
DOIhttp://dx.doi.org/10.1007/s11357-011-9260-2
 
PubMed Central IDPMC3337933
 
ISI Accession Number IDWOS:000303507400010
Funding AgencyGrant Number
HKU Alzheimer's Disease Research Network under Strategic Research Theme on Healthy Aging
Strategic Research Theme on Drug Discovery
Azalea
HKU20097176185
Funding Information:

Research in this laboratory is partly supported by HKU Alzheimer's Disease Research Network under Strategic Research Theme on Healthy Aging, Strategic Research Theme on Drug Discovery, Azalea (1972) Endowment Fund, and HKU Small Project Fund (20097176185).

 
ReferencesAllen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, Atzori C, Migheli A, Crowther RA, Ghetti B, Spillantini MG, Goedert M (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22:9340–9351

Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431. doi: 10.1016/S0002-9394(02)01624-0

Anderson DH, Talaga KC, Rivest AJ, Barron E, Hageman GS, Johnson LV (2004) Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78:243–256. doi: 10.1016/j.exer.2003.10.011

Arendash GW, Lewis J, Leighty RE, McGowan E, Cracchiolo JR, Hutton M, Garcia MF (2004) Multi-metric behavioral comparison of APPsw and P301L models for Alzheimer’s disease: linkage of poorer cognitive performance to tau pathology in forebrain. Brain Res 1012:29–41. doi: 10.1016/j.brainres.2004.02.081

Bakalash S, Kipnis J, Yoles E, Schwartz M (2002) Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. Invest Ophthalmol Vis Sci 43:2648–2653

Baum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HF, Goggins WB, Zee BC, Cheng KF, Fong CY, Wong A, Mok H, Chow MS, Ho PC, Ip SP, Ho CS, Yu XW, Lai CY, Chan MH, Szeto S, Chan IH, Mok V (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28:110–113. doi: 10.1097/jcp.0b013e318160862c

Bayer TA, Wirths O (2008) Review on the APP/PS1KI mouse model: intraneuronal Abeta accumulation triggers axonopathy, neuron loss and working memory impairment. Genes Brain Behav 7(Suppl 1):6–11. doi: 10.1007/s00281-008-0112-9


Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356. doi: 10.2741/1172


Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, Bruehl C (2008) Amyloid beta oligomers (A beta(1–42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci 28:788–797

Ron B, Elizabeth J, Kathryn Z-G, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alz Dement 3:186–191

Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54(Suppl 1):S204–S217. doi: 10.1016/j.mehy.2008.01.030


Gasparini L, Anthony Crowther R, Martin KR, Berg N, Coleman M, Goedert M, Spillantini MG (2009) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32:419–433. doi: 10.1097/IJG.0b013e318181284f

Hedges TR 3rd, Perez Galves R, Speigelman D, Barbas NR, Peli E, Yardley CJ (1996) Retinal nerve fiber layer abnormalities in Alzheimer’s disease. Acta Ophthalmol Scand 74:271–275

Tanghe A, Termont A, Merchiers P, Schilling S, Demuth HU, Scrocchi L, Van Leuven F, Griffioen G, Van Dooren T (2010) Pathological Hallmarks, Clinical Parallels, and Value for Drug Testing in Alzheimer’s Disease of the APP[V717I] London Transgenic Mouse Model. Int J Alzheimers Dis doi:10.4061/2010/417314

Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102

Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S (2009) Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 50:793–800. doi: 10.1126/science.274.5284.99

Hung CH, Ho YS, Chang RCC (2010) Modulation of mitochondrial calcium as a pharmacological target for Alzheimer’s disease. Ageing Res Rev 9:447–456. doi: 10.1016/j.arr.2010.05.003

Valenti DA (2010) Alzheimer’s disease: visual system review. Optometry 81:12–21

Ji JZ, Elyaman W, Yip HK, Lee VW, Yick LW, Hugon J, So KF (2004) CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: the possible involvement of STAT3 pathway. Eur J Neurosci 19:265–272

Suo Z, Cox AA, Bartelli N, Rasul I, Festoff BW, Premont RT, Arendash GW (2007) GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiol Aging 28:1873–1888

Pezzini A, Del Zotto E, Volonghi I, Giossi A, Costa P, Padovani A (2009) Cerebral amyloid angiopathy: a common cause of cerebral hemorrhage. Curr Med Chem 16:2498–2513. doi: 10.1016/0006-8993(93)90695-J



Mendez MF, Mendez MA, Martin R, Smyth KA, Whitehouse PJ (1990) Complex visual disturbances in Alzheimer’s disease. Neurology 40:439–443

Ju WK, Liu Q, Kim KY, Crowston JG, Lindsey JD, Agarwal N, Ellisman MH, Perkins GA, Weinreb RN (2007) Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC-5 cells. Invest Ophthalmol Vis Sci 48:2145–2151

Yin H, Chen L, Chen X, Liu X (2008) Soluble amyloid beta oligomers may contribute to apoptosis of retinal ganglion cells in glaucoma. Med Hypotheses 71:77–80. doi: 10.1016/j.neuroimage.2010.06.020

Roque RS, Caldwell RB (1990) Müller cell changes precede vascularization of the pigment epithelium in the dystrophic rat retina. Glia 3:464–475

LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509. doi: 10.1016/j.neurobiolaging.2006.08.013


Le Cudennec C, Faure A, Ly M, Delatour B (2008) One-year longitudinal evaluation of sensorimotor functions in APP751SL transgenic mice. Genes Brain Behav 7(Suppl 1):83–91

Yu MS, Ho YS, So KF, Yuen WH, Chang RCC (2006) Cytoprotective effects of Lycium barbarum against reducing stress on endoplasmic reticulum. Int J Mol Med 17:1157–1161

Li M, Chen L, Lee DH, Yu LC, Zhang Y (2007) The role of intracellular amyloid beta in Alzheimer’s disease. Prog Neurobiol 83:131–139. doi: 10.1523/JNEUROSCI.1357-09.2009

Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, Rizzuto R, Hajnoczky G (2008) Bidirectional Ca2+−dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA 105:20728–20733. doi: 10.1523/JNEUROSCI.4771-07.2008


King DL, Arendash GW, Crawford F, Sterk T, Menendez J, Mullan MJ (1999) Progressive and gender-dependent cognitive impairment in the APP(SW) transgenic mouse model for Alzheimer’s disease. Behav Brain Res 103:145–162

Luibl V, Isas JM, Kayed R, Glabe CG, Langen R, Chen J (2006) Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest 116:378–385. doi: 10.1016/0197-4580(96)00010-3


Bayer AU, Ferrari F, Erb C (2002) High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol 47:165–168

Moechars D, Dewachter I, Lorent K, Reversé D, Baekelandt V, Naidu A, Tesseur I, Spittaels K, Haute CV, Checler F, Godaux E, Cordell B, Van Leuven F (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274:6483–6492. doi: 10.1074/jbc.M409876200


Wostyn P, Audenaert K, De Deyn PP (2008) Alzheimer’s disease-related changes in diseases characterized by elevation of intracranial or intraocular pressure. Clin Neurol Neurosurg 110:101–109

Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985. doi: 10.1038/35050116

Blanks JC, Torigoe Y, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging 17:377–384

Morin PJ, Abraham CR, Amaratunga A, Johnson RJ, Huber G, Sandell JH, Fine RE (1993) Amyloid precursor protein is synthesized by retinal ganglion cells, rapidly transported to the optic nerve plasma membrane and nerve terminals, and metabolized. J Neurochem 61:464–473

Tamura H, Kawakami H, Kanamoto T, Kato T, Yokoyama T, Sasaki K, Izumi Y, Matsumoto M, Mishima HK (2006) High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neurol Sci 246:79–83

Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92:905–909. doi: 10.1038/416535a



Margrain TH, Boulton M, Marshall J, Sliney DH (2004) Do blue light filters confer protection against age-related macular degeneration? Prog Retin Eye Res 23:523–531

Ning A, Cui J, To E, Ashe KH, Matsubara J (2008) Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci 49:5136–5143. doi: 10.1016/j.clineuro.2007.10.011


Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, Chen Y, Zhang K, Ambati BK, Baffi JZ, Ambati J (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci USA 103:2328–2333. doi: 10.1073/pnas.0408835103

Ding JD, Lin J, Mace BE, Herrmann R, Sullivan P, Bowes Rickman C (2008) Targeting age-related macular degeneration with Alzheimer’s disease based immunotherapies: anti-amyloid-beta antibody attenuates pathologies in an age-related macular degeneration mouse model. Vision Res 48:339–345. doi: 10.1172/JCI24635

O’Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, Lichtenthaler SF, Hébert SS, De Strooper B, Haass C, Bennett DA, Vassar R (2008) Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 60:988–1009

Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X (2010) A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer’s disease. J Alz Dis 20(Suppl 2):S401–S412. doi: 10.1016/j.neuron.2008.10.047

Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002a) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539. doi: 10.1016/S0896-6273(03)00434-3

Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

Chiu K, Chan HC, Yeung SC, Yuen WH, Zee SY, Chang RCC, So KF (2009) Modulation of microglia by wolfberry on the survival of retinal ganglion cells in a rat ocular hypertension model. J Ocul Biol Dis Infor 2:127–136

Zahs KR, Ashe KH (2010) ‘Too much good news’—are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer’s disease? Trends Neurosci 33:381–389

Hintersteiner M, Enz A, Frey P, Jaton AL, Kinzy W, Kneuer R, Neumann U, Rudin M, Staufenbiel M, Stoeckli M, Wiederhold KH, Gremlich HU (2005) In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat Biotechnol 23:577–583. doi: 10.1073/pnas.0808953105

Ohyagi Y, Asahara H, Chui DH, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, Ikezoe K, Furuya H, Kawarabayashi T, Shoji M, Checler F, Iwaki T, Makifuchi T, Takeda K, Kira J, Tabira T (2005) Intracellular Aß42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer’s disease. FASEB J 19:255–257

Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 102:1095–1104

Price DL, Sisodia SS (1998) Mutant genes in familial Alzheimer’s disease and transgenic models. Annu Rev Neurosci 21:479–505

Scattoni ML, Gasparini L, Alleva E, Goedert M, Calamandrei G, Spillantini MG (2010) Early behavioural markers of disease in P301S tau transgenic mice. Behav Brain Res 208:250–257. doi: 10.1146/annurev.neuro.21.1.479

Price DL, Sisodia SS, Borchelt DR (1998a) Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282:1079–1083. doi: 10.1126/science.282.5391.1079

Gau JT, Steinhilb ML, Kao TC, D’Amato CJ, Gaut JR, Frey KA, Turner RS (2002) Stable beta-secretase activity and presynaptic cholinergic markers during progressive central nervous system amyloidogenesis in Tg2576 mice. Am J Pathol 160:731–738. doi: 10.1167/iovs.06-1029

Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122:598–614

Price DL, Tanzi RE, Borchelt DR, Sisodia SS (1998b) Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet 32:461–493. doi: 10.1007/s12177-009-9035-5


Rizzo M, Anderson SW, Dawson J, Nawrot M (2000) Vision and cognition in Alzheimer’s disease. Neuropsychologia 38:1157–1169

Yu MS, Lai CS, Ho YS, Zee SY, So KF, Yuen WH, Chang RCC (2007) Characterization of the effects of anti-aging medicine Fructus lycii on beta-amyloid peptide neurotoxicity. Int J Mol Med 20:261–268. doi: 10.1016/S0028-3932(00)00023-3

Shimazawa M, Ito Y, Inokuchi Y, Hara H (2007) Involvement of Double-Stranded RNA-Dependent Protein Kinase in ER Stress-Induced Retinal Neuron Damage. Invest Ophthalmol Vis Sci 48:3729–3736. doi: 10.1111/j.1471-4159.2007.04613.x

Carelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23:53–89

Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21:372–381. doi: 10.1016/j.bmcl.2010.09.029

Walsh DT, Montero RM, Bresciani LG, Jen AY, Leclercq PD, Saunders D, EL-Amir AN, Gbadamoshi L, Gentleman SM, Jen LS (2002b) Amyloid-beta peptide is toxic to neurons in vivo via indirect mechanisms. Neurobiol Dis 10:20–27

Rodrigues EB (2007) Inflammation in dry age-related macular degeneration. Ophthalmologica 221:143–152. doi: 10.1111/j.1600-0420.1996.tb00090.x

Seo AY, Joseph A-M, Dutta D, Hwang JCY, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123:2533–2542

Chiu K, Zhou Y, Yeung SC, Lok CK, Chan OO, Chang RCC, So KF, Chiu JF (2010) Up-regulation of crystallins is involved in the neuroprotective effect of wolfberry on survival of retinal ganglion cells in rat ocular hypertension model. J Cell Biochem 110:311–320. doi: 10.1242/jcs.070490

Spires TL, Hyman BT (2005) Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx 2:423–437. doi: 10.1602/neurorx.2.3.423


Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051–1063. doi: 10.1016/j.visres.2007.07.025

Caroni P (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71:3–9. doi: 10.1083/jcb.200108057







Wan J, Fu AK, Ip FC, Ng HK, Hugon J, Page G, Wang JH, Lai KO, Wu Z, Ip NY (2010) Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: implications in Alzheimer’s disease. J Neurosci 30:6873–6881. doi: 10.1523/JNEUROSCI.0519-10.2010

Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA, Trommer BL (2002) Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140

Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang GF, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319. doi: 10.1016/S0006-8993(01)03058-X

Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661. doi: 10.1016/S0002-9440(10)64893-6


Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103

Terwel D, Lasrado R, Snauwaert J, Vandeweert E, Van Haesendonck C, Borghgraef P, Van Leuven F (2005) Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice. J Biol Chem 280:3963–3973. doi: 10.1016/j.preteyeres.2003.10.003


Malamas MS, Robichaud A, Erdei J, Quagliato D, Solvibile W, Zhou P, Morris K, Turner J, Wagner E, Fan K, Olland A, Jacobsen S, Reinhart P, Riddell D, Pangalos M (2010) Design and synthesis of aminohydantoins as potent and selective human beta-secretase (BACE1) inhibitors with enhanced brain permeability. Bioorg Med Chem Lett 20:6597–6605. doi: 10.1001/archopht.122.4.598

Ho YS, Yu MS, Yik SY, So KF, Yuen WH, Chang RCC (2009) Polysaccharides from wolfberry antagonizes glutamate excitotoxicity in rat cortical neurons. Cell Mol Neurobiol 29:1233–1244

Chang RCC, Suen KC, Ma CH, Elyaman W, Ng HK, Hugon J (2002a) Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2 alpha in neuronal degeneration. J Neurochem 83:1215–1225. doi: 10.1523/JNEUROSCI.3024-08.2008

Chang RCC, Wong AKY, Ng HK, Hugon J (2002b) Phosphorylation of eukaryotic initiation factor-2 alpha (eIF2 alpha) is associated with neuronal degeneration in Alzheimer’s disease. Neuroreport 13:2429–2432

Cordeiro MF, Guo L, Coxon KM, Duggan J, Nizari S, Normando EM, Sensi SL, Sillito AM, Fitzke FW, Salt TE, Moss SE (2010) Imaging multiple phases of neurodegeneration: a novel approach to assessing cell death in vivo. Cell Death Dis 1:e3

McKinnon SJ (2003) Glaucoma: ocular Alzheimer’s disease? Front Biosci 8:s1140–s1156

Garcia MF, Gordon MN, Hutton M, Lewis J, McGowan E, Dickey CA, Morgan D, Arendash GW (2004) The retinal degeneration (rd) gene seriously impairs spatial cognitive performance in normal and Alzheimer’s transgenic mice. Neuroreport 15:73–77

Liu X, Hajnoczky G (2009) Ca2+−dependent regulation of mitochondrial dynamics by the Miro–Milton complex. Int J Biochem Cell Biol 41:1972–1976

Ho YS, So KF, Chang RCC (2010b) Anti-aging herbal medicine—how and why can they be used in aging-associated neurodegenerative diseases? Ageing Res Rev 9:354–362

Dutescu RM, Li QX, Crowston J, Masters CL, Baird PN, Culvenor JG (2009) Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer’s disease. Graefes Arch Clin Exp Ophthalmol 247:1213–1221

Gruart A, Lopez-Ramos JC, Munoz MD, Delgado-Garcia JM (2008) Aged wild-type and APP, PS1, and APP + PS1 mice present similar deficits in associative learning and synaptic plasticity independent of amyloid load. Neurobiol Dis 30:439–450

Yoshida T, Ohno-Matsui K, Ichinose S, Sato T, Iwata N, Saido TC, Hisatomi T, Mochizuki M, Morita I (2005) The potential role of amyloid beta in the pathogenesis of age-related macular degeneration. J Clin Invest 115:2793–2800

Suen KC, Yu MS, So KF, Chang RCC, Hugon J (2003) Upstream signaling pathways leading to the activation of double-stranded RNA-dependent serine/threonine protein kinase in {beta}-amyloid peptide neurotoxicity. J Biol Chem 278:49819–49827

Johnson LV, Leitner WP, Rivest AJ, Staples MK, Radeke MJ, Anderson DH (2002) The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci USA 99:11830–11835

Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, Carlson GA, Younkin SG, Ashe KH (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22:1858–1867

Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, Drobecq H, Clark A, Bonici B, Delacourte A, Benavides J, Schmitz C, Tremp G, Bayer TA, Benoit P, Pradier L (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289–1300. doi: 10.1016/S0002-9440(10)63388-3


Chan HC, Chang RCC, Koon-Ching Ip A, Chiu K, Yuen WH, Zee SY, So KF (2007) Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp Neurol 203:269–273. doi: 10.1016/j.biocel.2009.05.013


Chiu K, Lam TT, Ying Li WW, Caprioli J, Kwong JM (2005) Calpain and N-methyl-d-aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Res 1046:207–215

Ho YS, Yu MS, Yang XF, So KF, Yuen WH, Chang RCC (2010a) Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J Alzheimers Dis 19:813–827. doi: 10.1016/j.brainres.2005.04.016


Muyllaert D, Kremer A, Jaworski T, Borghgraef P, Devijver H, Croes S, Dewachter I, Van Leuven F (2008) Glycogen synthase kinase-3beta, or a link between amyloid and tau pathology? Genes Brain Behav 7(Suppl 1):57–66

Kong GY, Van Bergen NJ, Trounce IA, Crowston JG (2009) Mitochondrial dysfunction and glaucoma. J Glaucoma 18:93–100

Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT, Hageman GS, Dean M, Allikmets R, AMD Genetics Clinical Study Group (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458–462

Chiu K, Chang RCC, So KF (2007) Intravitreous injection for establishing ocular diseases model. J Vis Exp 8:313

Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL (2007) Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 48:2285–2289. doi: 10.1007/s00417-009-1060-3

Liu B, Rasool S, Yang Z, Glabe CG, Schreiber SS, Ge J, Tan Z (2009) Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer’s transgenic mice. Am J Pathol 175:2099–2110

Duyckaerts C, Potier MC, Delatour B (2008) Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:5–38. doi: 10.1007/s00401-007-0312-8

Eriksen JL, Janus CG (2007) Plaques, tangles, and memory loss in mouse models of neurodegeneration. Behav Genet 37:79–100. doi: 10.1167/iovs.08-2384



Nakada T, Matsuzawa H, Igarashi H, Fujii Y, Kwee IL (2008) In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system. J Neuroimaging 18:125–129

Frank S, Clavaguera F, Tolnay M (2008) Tauopathy models and human neuropathology: similarities and differences. Acta Neuropathol 115:39–53. doi: 10.1007/s00401-007-0291-9


Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, Prada C, Greenberg SM, Bacskai BJ, Frosch MP (2006) Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis 24:516–524. doi: 10.2353/ajpath.2009.090159

Patel M, Chan CC (2008) Immunopathological aspects of age-related macular degeneration. Semin Immunopathol 30:97–110

McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, Merges CA, Pease ME, Kerrigan DF, Ransom NL, Tahzib NG, Reitsamer HA, Levkovitch-Verbin H, Quigley HA, Zack DJ (2002) Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci 43:1077–1087. doi: 10.4061/2010/417314






Grundke-Iqbal I, Iqbal K, George L, Tung YC, Kim KS, Wisniewski HM (1989) Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc Natl Acad Sci USA 86:2853–2857. doi: 10.1073/pnas.86.8.2853

Guo L, Salt TE et al (2007) Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci USA 104:13444–13449. doi: 10.1002/glia.440030605


Mey J, Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602:304–317

Guo L, Duggan J, Cordeiro MF (2010) Alzheimer’s disease and retinal neurodegeneration. Curr Alzheimer Res 7:3–14
 
DC FieldValue
dc.contributor.authorChiu, K
 
dc.contributor.authorChan, TF
 
dc.contributor.authorWu, A
 
dc.contributor.authorLeung, IYP
 
dc.contributor.authorSo, KF
 
dc.contributor.authorChang, RCC
 
dc.date.accessioned2011-07-27T01:25:51Z
 
dc.date.available2011-07-27T01:25:51Z
 
dc.date.issued2012
 
dc.description.abstractAlzheimer's disease (AD) is an age-related progressive neurodegenerative disease commonly found among elderly. In addition to cognitive and behavioral deficits, vision abnormalities are prevalent in AD patients. Recent studies investigating retinal changes in AD double-transgenic mice have shown altered processing of amyloid precursor protein and accumulation of β-amyloid peptides in neurons of retinal ganglion cell layer (RGCL) and inner nuclear layer (INL). Apoptotic cells were also detected in the RGCL. Thus, the pathophysiological changes of retinas in AD patients are possibly resembled by AD transgenic models. The retina is a simple model of the brain in the sense that some pathological changes and therapeutic strategies from the retina may be observed or applicable to the brain. Furthermore, it is also possible to advance our understanding of pathological mechanisms in other retinal degenerative diseases. Therefore, studying AD-related retinal degeneration is a promising way for the investigation on (1) AD pathologies and therapies that would eventually benefit the brain and (2) cellular mechanisms in other retinal degenerations such as glaucoma and age-related macular degeneration. This review will highlight the efforts on retinal degenerative research using AD transgenic mouse models. © 2011 The Author(s).
 
dc.description.naturepublished_or_final_version
 
dc.description.otherSpringer Open Choice, 21 Feb 2012
 
dc.identifier.citationAge, 2012, v. 34 n. 3, p. 633-649 [How to Cite?]
DOI: http://dx.doi.org/10.1007/s11357-011-9260-2
 
dc.identifier.citeulike9313839
 
dc.identifier.doihttp://dx.doi.org/10.1007/s11357-011-9260-2
 
dc.identifier.eissn1574-4647
 
dc.identifier.epage17
 
dc.identifier.epage649
 
dc.identifier.hkuros186973
 
dc.identifier.hkuros199701
 
dc.identifier.isiWOS:000303507400010
Funding AgencyGrant Number
HKU Alzheimer's Disease Research Network under Strategic Research Theme on Healthy Aging
Strategic Research Theme on Drug Discovery
Azalea
HKU20097176185
Funding Information:

Research in this laboratory is partly supported by HKU Alzheimer's Disease Research Network under Strategic Research Theme on Healthy Aging, Strategic Research Theme on Drug Discovery, Azalea (1972) Endowment Fund, and HKU Small Project Fund (20097176185).

 
dc.identifier.issn0161-9152
2012 Impact Factor: 4.084
2012 SCImago Journal Rankings: 0.661
 
dc.identifier.issue3
 
dc.identifier.openurl
 
dc.identifier.pmcidPMC3337933
 
dc.identifier.pmid21559868
 
dc.identifier.scopuseid_2-s2.0-84863717137
 
dc.identifier.spage1
 
dc.identifier.spage633
 
dc.identifier.urihttp://hdl.handle.net/10722/135016
 
dc.identifier.volume34
 
dc.languageeng
 
dc.publisherSpringer Netherlands. The Journal's web site is located at http://www.springerlink.com/content/0161-9152/
 
dc.publisher.placeNetherlands
 
dc.relation.ispartofAge
 
dc.relation.referencesAllen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, Atzori C, Migheli A, Crowther RA, Ghetti B, Spillantini MG, Goedert M (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22:9340–9351
 
dc.relation.referencesAnderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411–431. doi: 10.1016/S0002-9394(02)01624-0
 
dc.relation.referencesAnderson DH, Talaga KC, Rivest AJ, Barron E, Hageman GS, Johnson LV (2004) Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78:243–256. doi: 10.1016/j.exer.2003.10.011
 
dc.relation.referencesArendash GW, Lewis J, Leighty RE, McGowan E, Cracchiolo JR, Hutton M, Garcia MF (2004) Multi-metric behavioral comparison of APPsw and P301L models for Alzheimer’s disease: linkage of poorer cognitive performance to tau pathology in forebrain. Brain Res 1012:29–41. doi: 10.1016/j.brainres.2004.02.081
 
dc.relation.referencesBakalash S, Kipnis J, Yoles E, Schwartz M (2002) Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. Invest Ophthalmol Vis Sci 43:2648–2653
 
dc.relation.referencesBaum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HF, Goggins WB, Zee BC, Cheng KF, Fong CY, Wong A, Mok H, Chow MS, Ho PC, Ip SP, Ho CS, Yu XW, Lai CY, Chan MH, Szeto S, Chan IH, Mok V (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28:110–113. doi: 10.1097/jcp.0b013e318160862c
 
dc.relation.referencesBayer TA, Wirths O (2008) Review on the APP/PS1KI mouse model: intraneuronal Abeta accumulation triggers axonopathy, neuron loss and working memory impairment. Genes Brain Behav 7(Suppl 1):6–11. doi: 10.1007/s00281-008-0112-9
 
dc.relation.referencesHardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356. doi: 10.2741/1172
 
dc.relation.referencesNimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, Bruehl C (2008) Amyloid beta oligomers (A beta(1–42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci 28:788–797
 
dc.relation.referencesRon B, Elizabeth J, Kathryn Z-G, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alz Dement 3:186–191
 
dc.relation.referencesKoronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL (2011) Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54(Suppl 1):S204–S217. doi: 10.1016/j.mehy.2008.01.030
 
dc.relation.referencesGasparini L, Anthony Crowther R, Martin KR, Berg N, Coleman M, Goedert M, Spillantini MG (2009) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32:419–433. doi: 10.1097/IJG.0b013e318181284f
 
dc.relation.referencesHedges TR 3rd, Perez Galves R, Speigelman D, Barbas NR, Peli E, Yardley CJ (1996) Retinal nerve fiber layer abnormalities in Alzheimer’s disease. Acta Ophthalmol Scand 74:271–275
 
dc.relation.referencesTanghe A, Termont A, Merchiers P, Schilling S, Demuth HU, Scrocchi L, Van Leuven F, Griffioen G, Van Dooren T (2010) Pathological Hallmarks, Clinical Parallels, and Value for Drug Testing in Alzheimer’s Disease of the APP[V717I] London Transgenic Mouse Model. Int J Alzheimers Dis doi:10.4061/2010/417314
 
dc.relation.referencesHsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102
 
dc.relation.referencesPerez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S (2009) Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 50:793–800. doi: 10.1126/science.274.5284.99
 
dc.relation.referencesHung CH, Ho YS, Chang RCC (2010) Modulation of mitochondrial calcium as a pharmacological target for Alzheimer’s disease. Ageing Res Rev 9:447–456. doi: 10.1016/j.arr.2010.05.003
 
dc.relation.referencesValenti DA (2010) Alzheimer’s disease: visual system review. Optometry 81:12–21
 
dc.relation.referencesJi JZ, Elyaman W, Yip HK, Lee VW, Yick LW, Hugon J, So KF (2004) CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: the possible involvement of STAT3 pathway. Eur J Neurosci 19:265–272
 
dc.relation.referencesSuo Z, Cox AA, Bartelli N, Rasul I, Festoff BW, Premont RT, Arendash GW (2007) GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiol Aging 28:1873–1888
 
dc.relation.referencesPezzini A, Del Zotto E, Volonghi I, Giossi A, Costa P, Padovani A (2009) Cerebral amyloid angiopathy: a common cause of cerebral hemorrhage. Curr Med Chem 16:2498–2513. doi: 10.1016/0006-8993(93)90695-J
 
dc.relation.referencesMendez MF, Mendez MA, Martin R, Smyth KA, Whitehouse PJ (1990) Complex visual disturbances in Alzheimer’s disease. Neurology 40:439–443
 
dc.relation.referencesJu WK, Liu Q, Kim KY, Crowston JG, Lindsey JD, Agarwal N, Ellisman MH, Perkins GA, Weinreb RN (2007) Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC-5 cells. Invest Ophthalmol Vis Sci 48:2145–2151
 
dc.relation.referencesYin H, Chen L, Chen X, Liu X (2008) Soluble amyloid beta oligomers may contribute to apoptosis of retinal ganglion cells in glaucoma. Med Hypotheses 71:77–80. doi: 10.1016/j.neuroimage.2010.06.020
 
dc.relation.referencesRoque RS, Caldwell RB (1990) Müller cell changes precede vascularization of the pigment epithelium in the dystrophic rat retina. Glia 3:464–475
 
dc.relation.referencesLaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509. doi: 10.1016/j.neurobiolaging.2006.08.013
 
dc.relation.referencesLe Cudennec C, Faure A, Ly M, Delatour B (2008) One-year longitudinal evaluation of sensorimotor functions in APP751SL transgenic mice. Genes Brain Behav 7(Suppl 1):83–91
 
dc.relation.referencesYu MS, Ho YS, So KF, Yuen WH, Chang RCC (2006) Cytoprotective effects of Lycium barbarum against reducing stress on endoplasmic reticulum. Int J Mol Med 17:1157–1161
 
dc.relation.referencesLi M, Chen L, Lee DH, Yu LC, Zhang Y (2007) The role of intracellular amyloid beta in Alzheimer’s disease. Prog Neurobiol 83:131–139. doi: 10.1523/JNEUROSCI.1357-09.2009
 
dc.relation.referencesSaotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, Rizzuto R, Hajnoczky G (2008) Bidirectional Ca2+−dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA 105:20728–20733. doi: 10.1523/JNEUROSCI.4771-07.2008
 
dc.relation.referencesKing DL, Arendash GW, Crawford F, Sterk T, Menendez J, Mullan MJ (1999) Progressive and gender-dependent cognitive impairment in the APP(SW) transgenic mouse model for Alzheimer’s disease. Behav Brain Res 103:145–162
 
dc.relation.referencesLuibl V, Isas JM, Kayed R, Glabe CG, Langen R, Chen J (2006) Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest 116:378–385. doi: 10.1016/0197-4580(96)00010-3
 
dc.relation.referencesBayer AU, Ferrari F, Erb C (2002) High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol 47:165–168
 
dc.relation.referencesMoechars D, Dewachter I, Lorent K, Reversé D, Baekelandt V, Naidu A, Tesseur I, Spittaels K, Haute CV, Checler F, Godaux E, Cordell B, Van Leuven F (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274:6483–6492. doi: 10.1074/jbc.M409876200
 
dc.relation.referencesWostyn P, Audenaert K, De Deyn PP (2008) Alzheimer’s disease-related changes in diseases characterized by elevation of intracranial or intraocular pressure. Clin Neurol Neurosurg 110:101–109
 
dc.relation.referencesMorgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985. doi: 10.1038/35050116
 
dc.relation.referencesBlanks JC, Torigoe Y, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging 17:377–384
 
dc.relation.referencesMorin PJ, Abraham CR, Amaratunga A, Johnson RJ, Huber G, Sandell JH, Fine RE (1993) Amyloid precursor protein is synthesized by retinal ganglion cells, rapidly transported to the optic nerve plasma membrane and nerve terminals, and metabolized. J Neurochem 61:464–473
 
dc.relation.referencesTamura H, Kawakami H, Kanamoto T, Kato T, Yokoyama T, Sasaki K, Izumi Y, Matsumoto M, Mishima HK (2006) High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neurol Sci 246:79–83
 
dc.relation.referencesPierce EA, Avery RL, Foley ED, Aiello LP, Smith LE (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92:905–909. doi: 10.1038/416535a
 
dc.relation.referencesMargrain TH, Boulton M, Marshall J, Sliney DH (2004) Do blue light filters confer protection against age-related macular degeneration? Prog Retin Eye Res 23:523–531
 
dc.relation.referencesNing A, Cui J, To E, Ashe KH, Matsubara J (2008) Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci 49:5136–5143. doi: 10.1016/j.clineuro.2007.10.011
 
dc.relation.referencesNozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, Chen Y, Zhang K, Ambati BK, Baffi JZ, Ambati J (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci USA 103:2328–2333. doi: 10.1073/pnas.0408835103
 
dc.relation.referencesDing JD, Lin J, Mace BE, Herrmann R, Sullivan P, Bowes Rickman C (2008) Targeting age-related macular degeneration with Alzheimer’s disease based immunotherapies: anti-amyloid-beta antibody attenuates pathologies in an age-related macular degeneration mouse model. Vision Res 48:339–345. doi: 10.1172/JCI24635
 
dc.relation.referencesO’Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, Lichtenthaler SF, Hébert SS, De Strooper B, Haass C, Bennett DA, Vassar R (2008) Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 60:988–1009
 
dc.relation.referencesSantos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X (2010) A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer’s disease. J Alz Dis 20(Suppl 2):S401–S412. doi: 10.1016/j.neuron.2008.10.047
 
dc.relation.referencesOddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421
 
dc.relation.referencesWalsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002a) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539. doi: 10.1016/S0896-6273(03)00434-3
 
dc.relation.referencesYang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901
 
dc.relation.referencesChiu K, Chan HC, Yeung SC, Yuen WH, Zee SY, Chang RCC, So KF (2009) Modulation of microglia by wolfberry on the survival of retinal ganglion cells in a rat ocular hypertension model. J Ocul Biol Dis Infor 2:127–136
 
dc.relation.referencesZahs KR, Ashe KH (2010) ‘Too much good news’—are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer’s disease? Trends Neurosci 33:381–389
 
dc.relation.referencesHintersteiner M, Enz A, Frey P, Jaton AL, Kinzy W, Kneuer R, Neumann U, Rudin M, Staufenbiel M, Stoeckli M, Wiederhold KH, Gremlich HU (2005) In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat Biotechnol 23:577–583. doi: 10.1073/pnas.0808953105
 
dc.relation.referencesOhyagi Y, Asahara H, Chui DH, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, Ikezoe K, Furuya H, Kawarabayashi T, Shoji M, Checler F, Iwaki T, Makifuchi T, Takeda K, Kira J, Tabira T (2005) Intracellular Aß42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer’s disease. FASEB J 19:255–257
 
dc.relation.referencesGarcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 102:1095–1104
 
dc.relation.referencesPrice DL, Sisodia SS (1998) Mutant genes in familial Alzheimer’s disease and transgenic models. Annu Rev Neurosci 21:479–505
 
dc.relation.referencesScattoni ML, Gasparini L, Alleva E, Goedert M, Calamandrei G, Spillantini MG (2010) Early behavioural markers of disease in P301S tau transgenic mice. Behav Brain Res 208:250–257. doi: 10.1146/annurev.neuro.21.1.479
 
dc.relation.referencesPrice DL, Sisodia SS, Borchelt DR (1998a) Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282:1079–1083. doi: 10.1126/science.282.5391.1079
 
dc.relation.referencesGau JT, Steinhilb ML, Kao TC, D’Amato CJ, Gaut JR, Frey KA, Turner RS (2002) Stable beta-secretase activity and presynaptic cholinergic markers during progressive central nervous system amyloidogenesis in Tg2576 mice. Am J Pathol 160:731–738. doi: 10.1167/iovs.06-1029
 
dc.relation.referencesZarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122:598–614
 
dc.relation.referencesPrice DL, Tanzi RE, Borchelt DR, Sisodia SS (1998b) Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet 32:461–493. doi: 10.1007/s12177-009-9035-5
 
dc.relation.referencesRizzo M, Anderson SW, Dawson J, Nawrot M (2000) Vision and cognition in Alzheimer’s disease. Neuropsychologia 38:1157–1169
 
dc.relation.referencesYu MS, Lai CS, Ho YS, Zee SY, So KF, Yuen WH, Chang RCC (2007) Characterization of the effects of anti-aging medicine Fructus lycii on beta-amyloid peptide neurotoxicity. Int J Mol Med 20:261–268. doi: 10.1016/S0028-3932(00)00023-3
 
dc.relation.referencesShimazawa M, Ito Y, Inokuchi Y, Hara H (2007) Involvement of Double-Stranded RNA-Dependent Protein Kinase in ER Stress-Induced Retinal Neuron Damage. Invest Ophthalmol Vis Sci 48:3729–3736. doi: 10.1111/j.1471-4159.2007.04613.x
 
dc.relation.referencesCarelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23:53–89
 
dc.relation.referencesKawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci 21:372–381. doi: 10.1016/j.bmcl.2010.09.029
 
dc.relation.referencesWalsh DT, Montero RM, Bresciani LG, Jen AY, Leclercq PD, Saunders D, EL-Amir AN, Gbadamoshi L, Gentleman SM, Jen LS (2002b) Amyloid-beta peptide is toxic to neurons in vivo via indirect mechanisms. Neurobiol Dis 10:20–27
 
dc.relation.referencesRodrigues EB (2007) Inflammation in dry age-related macular degeneration. Ophthalmologica 221:143–152. doi: 10.1111/j.1600-0420.1996.tb00090.x
 
dc.relation.referencesSeo AY, Joseph A-M, Dutta D, Hwang JCY, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123:2533–2542
 
dc.relation.referencesChiu K, Zhou Y, Yeung SC, Lok CK, Chan OO, Chang RCC, So KF, Chiu JF (2010) Up-regulation of crystallins is involved in the neuroprotective effect of wolfberry on survival of retinal ganglion cells in rat ocular hypertension model. J Cell Biochem 110:311–320. doi: 10.1242/jcs.070490
 
dc.relation.referencesSpires TL, Hyman BT (2005) Transgenic models of Alzheimer’s disease: learning from animals. NeuroRx 2:423–437. doi: 10.1602/neurorx.2.3.423
 
dc.relation.referencesStamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051–1063. doi: 10.1016/j.visres.2007.07.025
 
dc.relation.referencesCaroni P (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71:3–9. doi: 10.1083/jcb.200108057
 
dc.relation.referencesWan J, Fu AK, Ip FC, Ng HK, Hugon J, Page G, Wang JH, Lai KO, Wu Z, Ip NY (2010) Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: implications in Alzheimer’s disease. J Neurosci 30:6873–6881. doi: 10.1523/JNEUROSCI.0519-10.2010
 
dc.relation.referencesWang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA, Trommer BL (2002) Soluble oligomers of beta amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140
 
dc.relation.referencesKlunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergström M, Savitcheva I, Huang GF, Estrada S, Ausén B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, Långström B (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol 55:306–319. doi: 10.1016/S0006-8993(01)03058-X
 
dc.relation.referencesJimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650–11661. doi: 10.1016/S0002-9440(10)64893-6
 
dc.relation.referencesWang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29:9090–9103
 
dc.relation.referencesTerwel D, Lasrado R, Snauwaert J, Vandeweert E, Van Haesendonck C, Borghgraef P, Van Leuven F (2005) Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice. J Biol Chem 280:3963–3973. doi: 10.1016/j.preteyeres.2003.10.003
 
dc.relation.referencesMalamas MS, Robichaud A, Erdei J, Quagliato D, Solvibile W, Zhou P, Morris K, Turner J, Wagner E, Fan K, Olland A, Jacobsen S, Reinhart P, Riddell D, Pangalos M (2010) Design and synthesis of aminohydantoins as potent and selective human beta-secretase (BACE1) inhibitors with enhanced brain permeability. Bioorg Med Chem Lett 20:6597–6605. doi: 10.1001/archopht.122.4.598
 
dc.relation.referencesHo YS, Yu MS, Yik SY, So KF, Yuen WH, Chang RCC (2009) Polysaccharides from wolfberry antagonizes glutamate excitotoxicity in rat cortical neurons. Cell Mol Neurobiol 29:1233–1244
 
dc.relation.referencesChang RCC, Suen KC, Ma CH, Elyaman W, Ng HK, Hugon J (2002a) Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2 alpha in neuronal degeneration. J Neurochem 83:1215–1225. doi: 10.1523/JNEUROSCI.3024-08.2008
 
dc.relation.referencesChang RCC, Wong AKY, Ng HK, Hugon J (2002b) Phosphorylation of eukaryotic initiation factor-2 alpha (eIF2 alpha) is associated with neuronal degeneration in Alzheimer’s disease. Neuroreport 13:2429–2432
 
dc.relation.referencesCordeiro MF, Guo L, Coxon KM, Duggan J, Nizari S, Normando EM, Sensi SL, Sillito AM, Fitzke FW, Salt TE, Moss SE (2010) Imaging multiple phases of neurodegeneration: a novel approach to assessing cell death in vivo. Cell Death Dis 1:e3
 
dc.relation.referencesMcKinnon SJ (2003) Glaucoma: ocular Alzheimer’s disease? Front Biosci 8:s1140–s1156
 
dc.relation.referencesGarcia MF, Gordon MN, Hutton M, Lewis J, McGowan E, Dickey CA, Morgan D, Arendash GW (2004) The retinal degeneration (rd) gene seriously impairs spatial cognitive performance in normal and Alzheimer’s transgenic mice. Neuroreport 15:73–77
 
dc.relation.referencesLiu X, Hajnoczky G (2009) Ca2+−dependent regulation of mitochondrial dynamics by the Miro–Milton complex. Int J Biochem Cell Biol 41:1972–1976
 
dc.relation.referencesHo YS, So KF, Chang RCC (2010b) Anti-aging herbal medicine—how and why can they be used in aging-associated neurodegenerative diseases? Ageing Res Rev 9:354–362
 
dc.relation.referencesDutescu RM, Li QX, Crowston J, Masters CL, Baird PN, Culvenor JG (2009) Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer’s disease. Graefes Arch Clin Exp Ophthalmol 247:1213–1221
 
dc.relation.referencesGruart A, Lopez-Ramos JC, Munoz MD, Delgado-Garcia JM (2008) Aged wild-type and APP, PS1, and APP + PS1 mice present similar deficits in associative learning and synaptic plasticity independent of amyloid load. Neurobiol Dis 30:439–450
 
dc.relation.referencesYoshida T, Ohno-Matsui K, Ichinose S, Sato T, Iwata N, Saido TC, Hisatomi T, Mochizuki M, Morita I (2005) The potential role of amyloid beta in the pathogenesis of age-related macular degeneration. J Clin Invest 115:2793–2800
 
dc.relation.referencesSuen KC, Yu MS, So KF, Chang RCC, Hugon J (2003) Upstream signaling pathways leading to the activation of double-stranded RNA-dependent serine/threonine protein kinase in {beta}-amyloid peptide neurotoxicity. J Biol Chem 278:49819–49827
 
dc.relation.referencesJohnson LV, Leitner WP, Rivest AJ, Staples MK, Radeke MJ, Anderson DH (2002) The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci USA 99:11830–11835
 
dc.relation.referencesWesterman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, Carlson GA, Younkin SG, Ashe KH (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22:1858–1867
 
dc.relation.referencesCasas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, Drobecq H, Clark A, Bonici B, Delacourte A, Benavides J, Schmitz C, Tremp G, Bayer TA, Benoit P, Pradier L (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289–1300. doi: 10.1016/S0002-9440(10)63388-3
 
dc.relation.referencesChan HC, Chang RCC, Koon-Ching Ip A, Chiu K, Yuen WH, Zee SY, So KF (2007) Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp Neurol 203:269–273. doi: 10.1016/j.biocel.2009.05.013
 
dc.relation.referencesChiu K, Lam TT, Ying Li WW, Caprioli J, Kwong JM (2005) Calpain and N-methyl-d-aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Res 1046:207–215
 
dc.relation.referencesHo YS, Yu MS, Yang XF, So KF, Yuen WH, Chang RCC (2010a) Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J Alzheimers Dis 19:813–827. doi: 10.1016/j.brainres.2005.04.016
 
dc.relation.referencesMuyllaert D, Kremer A, Jaworski T, Borghgraef P, Devijver H, Croes S, Dewachter I, Van Leuven F (2008) Glycogen synthase kinase-3beta, or a link between amyloid and tau pathology? Genes Brain Behav 7(Suppl 1):57–66
 
dc.relation.referencesKong GY, Van Bergen NJ, Trounce IA, Crowston JG (2009) Mitochondrial dysfunction and glaucoma. J Glaucoma 18:93–100
 
dc.relation.referencesGold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT, Hageman GS, Dean M, Allikmets R, AMD Genetics Clinical Study Group (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458–462
 
dc.relation.referencesChiu K, Chang RCC, So KF (2007) Intravitreous injection for establishing ocular diseases model. J Vis Exp 8:313
 
dc.relation.referencesBerisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL (2007) Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 48:2285–2289. doi: 10.1007/s00417-009-1060-3
 
dc.relation.referencesLiu B, Rasool S, Yang Z, Glabe CG, Schreiber SS, Ge J, Tan Z (2009) Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer’s transgenic mice. Am J Pathol 175:2099–2110
 
dc.relation.referencesDuyckaerts C, Potier MC, Delatour B (2008) Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:5–38. doi: 10.1007/s00401-007-0312-8
 
dc.relation.referencesEriksen JL, Janus CG (2007) Plaques, tangles, and memory loss in mouse models of neurodegeneration. Behav Genet 37:79–100. doi: 10.1167/iovs.08-2384
 
dc.relation.referencesNakada T, Matsuzawa H, Igarashi H, Fujii Y, Kwee IL (2008) In vivo visualization of senile-plaque-like pathology in Alzheimer’s disease patients by MR microscopy on a 7T system. J Neuroimaging 18:125–129
 
dc.relation.referencesFrank S, Clavaguera F, Tolnay M (2008) Tauopathy models and human neuropathology: similarities and differences. Acta Neuropathol 115:39–53. doi: 10.1007/s00401-007-0291-9
 
dc.relation.referencesGarcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, Prada C, Greenberg SM, Bacskai BJ, Frosch MP (2006) Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis 24:516–524. doi: 10.2353/ajpath.2009.090159
 
dc.relation.referencesPatel M, Chan CC (2008) Immunopathological aspects of age-related macular degeneration. Semin Immunopathol 30:97–110
 
dc.relation.referencesMcKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, Merges CA, Pease ME, Kerrigan DF, Ransom NL, Tahzib NG, Reitsamer HA, Levkovitch-Verbin H, Quigley HA, Zack DJ (2002) Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci 43:1077–1087. doi: 10.4061/2010/417314
 
dc.relation.referencesGrundke-Iqbal I, Iqbal K, George L, Tung YC, Kim KS, Wisniewski HM (1989) Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc Natl Acad Sci USA 86:2853–2857. doi: 10.1073/pnas.86.8.2853
 
dc.relation.referencesGuo L, Salt TE et al (2007) Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci USA 104:13444–13449. doi: 10.1002/glia.440030605
 
dc.relation.referencesMey J, Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602:304–317
 
dc.relation.referencesGuo L, Duggan J, Cordeiro MF (2010) Alzheimer’s disease and retinal neurodegeneration. Curr Alzheimer Res 7:3–14
 
dc.rightsThe Author(s)
 
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License
 
dc.subjectAge-related macular degeneration
 
dc.subjectAlzheimer's disease
 
dc.subjectGlaucoma
 
dc.subjectInner nuclear layer
 
dc.subjectNeurodegeneration
 
dc.subjectRetina
 
dc.subjectRetinal ganglion cells
 
dc.titleNeurodegeneration of the retina in mouse models of Alzheimer's disease: what can we learn from the retina?
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Chiu, K</contributor.author>
<contributor.author>Chan, TF</contributor.author>
<contributor.author>Wu, A</contributor.author>
<contributor.author>Leung, IYP</contributor.author>
<contributor.author>So, KF</contributor.author>
<contributor.author>Chang, RCC</contributor.author>
<date.accessioned>2011-07-27T01:25:51Z</date.accessioned>
<date.available>2011-07-27T01:25:51Z</date.available>
<date.issued>2012</date.issued>
<identifier.citation>Age, 2012, v. 34 n. 3, p. 633-649</identifier.citation>
<identifier.issn>0161-9152</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/135016</identifier.uri>
<description.abstract>Alzheimer&apos;s disease (AD) is an age-related progressive neurodegenerative disease commonly found among elderly. In addition to cognitive and behavioral deficits, vision abnormalities are prevalent in AD patients. Recent studies investigating retinal changes in AD double-transgenic mice have shown altered processing of amyloid precursor protein and accumulation of &#946;-amyloid peptides in neurons of retinal ganglion cell layer (RGCL) and inner nuclear layer (INL). Apoptotic cells were also detected in the RGCL. Thus, the pathophysiological changes of retinas in AD patients are possibly resembled by AD transgenic models. The retina is a simple model of the brain in the sense that some pathological changes and therapeutic strategies from the retina may be observed or applicable to the brain. Furthermore, it is also possible to advance our understanding of pathological mechanisms in other retinal degenerative diseases. Therefore, studying AD-related retinal degeneration is a promising way for the investigation on (1) AD pathologies and therapies that would eventually benefit the brain and (2) cellular mechanisms in other retinal degenerations such as glaucoma and age-related macular degeneration. This review will highlight the efforts on retinal degenerative research using AD transgenic mouse models. &#169; 2011 The Author(s).</description.abstract>
<language>eng</language>
<publisher>Springer Netherlands. The Journal&apos;s web site is located at http://www.springerlink.com/content/0161-9152/</publisher>
<relation.ispartof>Age</relation.ispartof>
<rights>The Author(s)</rights>
<rights>Creative Commons: Attribution 3.0 Hong Kong License</rights>
<subject>Age-related macular degeneration</subject>
<subject>Alzheimer&apos;s disease</subject>
<subject>Glaucoma</subject>
<subject>Inner nuclear layer</subject>
<subject>Neurodegeneration</subject>
<subject>Retina</subject>
<subject>Retinal ganglion cells</subject>
<title>Neurodegeneration of the retina in mouse models of Alzheimer&apos;s disease: what can we learn from the retina?</title>
<type>Article</type>
<identifier.openurl>http://library.hku.hk:4551/resserv?sid=springerlink&amp;genre=article&amp;atitle=Neurodegeneration of the retina in mouse models of Alzheimer&#8217;s disease: what can we learn from the retina?&amp;title=AGE&amp;issn=01619152&amp;date=2011-05-11&amp; spage=1&amp;authors=Kin Chiu, Tin-Fung Chan, Andrew Wu, &lt;i&gt;et al.&lt;/i&gt;</identifier.openurl>
<description.nature>published_or_final_version</description.nature>
<identifier.doi>10.1007/s11357-011-9260-2</identifier.doi>
<identifier.pmid>21559868</identifier.pmid>
<identifier.pmcid>PMC3337933</identifier.pmcid>
<identifier.scopus>eid_2-s2.0-84863717137</identifier.scopus>
<identifier.hkuros>186973</identifier.hkuros>
<identifier.hkuros>199701</identifier.hkuros>
<relation.references>Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, Holzer M, Craxton M, Emson PC, Atzori C, Migheli A, Crowther RA, Ghetti B, Spillantini MG, Goedert M (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22:9340&#8211;9351</relation.references>
<relation.references>Anderson DH, Mullins RF, Hageman GS, Johnson LV (2002) A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 134:411&#8211;431</relation.references>
<relation.references>doi: 10.1016/S0002-9394(02)01624-0</relation.references>
<relation.references>Anderson DH, Talaga KC, Rivest AJ, Barron E, Hageman GS, Johnson LV (2004) Characterization of beta amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78:243&#8211;256</relation.references>
<relation.references>doi: 10.1016/j.exer.2003.10.011</relation.references>
<relation.references>Arendash GW, Lewis J, Leighty RE, McGowan E, Cracchiolo JR, Hutton M, Garcia MF (2004) Multi-metric behavioral comparison of APPsw and P301L models for Alzheimer&#8217;s disease: linkage of poorer cognitive performance to tau pathology in forebrain. Brain Res 1012:29&#8211;41</relation.references>
<relation.references>doi: 10.1016/j.brainres.2004.02.081</relation.references>
<relation.references>Bakalash S, Kipnis J, Yoles E, Schwartz M (2002) Resistance of retinal ganglion cells to an increase in intraocular pressure is immune-dependent. Invest Ophthalmol Vis Sci 43:2648&#8211;2653</relation.references>
<relation.references>Baum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J, Lam L, Leung V, Hui E, Ng C, Woo J, Chiu HF, Goggins WB, Zee BC, Cheng KF, Fong CY, Wong A, Mok H, Chow MS, Ho PC, Ip SP, Ho CS, Yu XW, Lai CY, Chan MH, Szeto S, Chan IH, Mok V (2008) Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol 28:110&#8211;113</relation.references>
<relation.references>doi: 10.1097/jcp.0b013e318160862c</relation.references>
<relation.references>Bayer TA, Wirths O (2008) Review on the APP/PS1KI mouse model: intraneuronal Abeta accumulation triggers axonopathy, neuron loss and working memory impairment. Genes Brain Behav 7(Suppl 1):6&#8211;11</relation.references>
<relation.references>doi: 10.1007/s00281-008-0112-9</relation.references>
<relation.references>doi: 10.2174/156720510790274491</relation.references>
<relation.references>Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer&#8217;s disease: progress and problems on the road to therapeutics. Science 297:353&#8211;356</relation.references>
<relation.references>doi: 10.2741/1172</relation.references>
<relation.references>doi: 10.1126/science.1072994</relation.references>
<relation.references>Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, Bruehl C (2008) Amyloid beta oligomers (A beta(1&#8211;42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci 28:788&#8211;797</relation.references>
<relation.references>Ron B, Elizabeth J, Kathryn Z-G, Arrighi HM (2007) Forecasting the global burden of Alzheimer&#8217;s disease. Alz Dement 3:186&#8211;191</relation.references>
<relation.references>Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL (2011) Identification of amyloid plaques in retinas from Alzheimer&#8217;s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 54(Suppl 1):S204&#8211;S217</relation.references>
<relation.references>doi: 10.1016/j.mehy.2008.01.030</relation.references>
<relation.references>doi: 10.1159/000047976</relation.references>
<relation.references>Gasparini L, Anthony Crowther R, Martin KR, Berg N, Coleman M, Goedert M, Spillantini MG (2009) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32:419&#8211;433</relation.references>
<relation.references>doi: 10.1097/IJG.0b013e318181284f</relation.references>
<relation.references>Hedges TR 3rd, Perez Galves R, Speigelman D, Barbas NR, Peli E, Yardley CJ (1996) Retinal nerve fiber layer abnormalities in Alzheimer&#8217;s disease. Acta Ophthalmol Scand 74:271&#8211;275</relation.references>
<relation.references>Tanghe A, Termont A, Merchiers P, Schilling S, Demuth HU, Scrocchi L, Van Leuven F, Griffioen G, Van Dooren T (2010) Pathological Hallmarks, Clinical Parallels, and Value for Drug Testing in Alzheimer&#8217;s Disease of the APP[V717I] London Transgenic Mouse Model. Int J Alzheimers Dis doi:10.4061/2010/417314</relation.references>
<relation.references>Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99&#8211;102</relation.references>
<relation.references>Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S (2009) Beta-amyloid deposition and functional impairment in the retina of the APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer&#8217;s disease. Invest Ophthalmol Vis Sci 50:793&#8211;800</relation.references>
<relation.references>doi: 10.1126/science.274.5284.99</relation.references>
<relation.references>Hung CH, Ho YS, Chang RCC (2010) Modulation of mitochondrial calcium as a pharmacological target for Alzheimer&#8217;s disease. Ageing Res Rev 9:447&#8211;456</relation.references>
<relation.references>doi: 10.1016/j.arr.2010.05.003</relation.references>
<relation.references>Valenti DA (2010) Alzheimer&#8217;s disease: visual system review. Optometry 81:12&#8211;21</relation.references>
<relation.references>Ji JZ, Elyaman W, Yip HK, Lee VW, Yick LW, Hugon J, So KF (2004) CNTF promotes survival of retinal ganglion cells after induction of ocular hypertension in rats: the possible involvement of STAT3 pathway. Eur J Neurosci 19:265&#8211;272</relation.references>
<relation.references>Suo Z, Cox AA, Bartelli N, Rasul I, Festoff BW, Premont RT, Arendash GW (2007) GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment. Neurobiol Aging 28:1873&#8211;1888</relation.references>
<relation.references>Pezzini A, Del Zotto E, Volonghi I, Giossi A, Costa P, Padovani A (2009) Cerebral amyloid angiopathy: a common cause of cerebral hemorrhage. Curr Med Chem 16:2498&#8211;2513</relation.references>
<relation.references>doi: 10.1016/0006-8993(93)90695-J</relation.references>
<relation.references>doi: 10.1111/j.0953-816X.2003.03107.x</relation.references>
<relation.references>doi: 10.1038/nbt1085</relation.references>
<relation.references>Mendez MF, Mendez MA, Martin R, Smyth KA, Whitehouse PJ (1990) Complex visual disturbances in Alzheimer&#8217;s disease. Neurology 40:439&#8211;443</relation.references>
<relation.references>Ju WK, Liu Q, Kim KY, Crowston JG, Lindsey JD, Agarwal N, Ellisman MH, Perkins GA, Weinreb RN (2007) Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC-5 cells. Invest Ophthalmol Vis Sci 48:2145&#8211;2151</relation.references>
<relation.references>Yin H, Chen L, Chen X, Liu X (2008) Soluble amyloid beta oligomers may contribute to apoptosis of retinal ganglion cells in glaucoma. Med Hypotheses 71:77&#8211;80</relation.references>
<relation.references>doi: 10.1016/j.neuroimage.2010.06.020</relation.references>
<relation.references>Roque RS, Caldwell RB (1990) M&#252;ller cell changes precede vascularization of the pigment epithelium in the dystrophic rat retina. Glia 3:464&#8211;475</relation.references>
<relation.references>LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer&#8217;s disease. Nat Rev Neurosci 8:499&#8211;509</relation.references>
<relation.references>doi: 10.1016/j.neurobiolaging.2006.08.013</relation.references>
<relation.references>doi: 10.1038/nrn2168</relation.references>
<relation.references>Le Cudennec C, Faure A, Ly M, Delatour B (2008) One-year longitudinal evaluation of sensorimotor functions in APP751SL transgenic mice. Genes Brain Behav 7(Suppl 1):83&#8211;91</relation.references>
<relation.references>Yu MS, Ho YS, So KF, Yuen WH, Chang RCC (2006) Cytoprotective effects of Lycium barbarum against reducing stress on endoplasmic reticulum. Int J Mol Med 17:1157&#8211;1161</relation.references>
<relation.references>Li M, Chen L, Lee DH, Yu LC, Zhang Y (2007) The role of intracellular amyloid beta in Alzheimer&#8217;s disease. Prog Neurobiol 83:131&#8211;139</relation.references>
<relation.references>doi: 10.1523/JNEUROSCI.1357-09.2009</relation.references>
<relation.references>Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, Rizzuto R, Hajnoczky G (2008) Bidirectional Ca2+&#8722;dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA 105:20728&#8211;20733</relation.references>
<relation.references>doi: 10.1523/JNEUROSCI.4771-07.2008</relation.references>
<relation.references>doi: 10.1016/j.pneurobio.2007.08.002</relation.references>
<relation.references>King DL, Arendash GW, Crawford F, Sterk T, Menendez J, Mullan MJ (1999) Progressive and gender-dependent cognitive impairment in the APP(SW) transgenic mouse model for Alzheimer&#8217;s disease. Behav Brain Res 103:145&#8211;162</relation.references>
<relation.references>Luibl V, Isas JM, Kayed R, Glabe CG, Langen R, Chen J (2006) Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers. J Clin Invest 116:378&#8211;385</relation.references>
<relation.references>doi: 10.1016/0197-4580(96)00010-3</relation.references>
<relation.references>doi: 10.1172/JCI25843</relation.references>
<relation.references>Bayer AU, Ferrari F, Erb C (2002) High occurrence rate of glaucoma among patients with Alzheimer&#8217;s disease. Eur Neurol 47:165&#8211;168</relation.references>
<relation.references>Moechars D, Dewachter I, Lorent K, Revers&#233; D, Baekelandt V, Naidu A, Tesseur I, Spittaels K, Haute CV, Checler F, Godaux E, Cordell B, Van Leuven F (1999) Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J Biol Chem 274:6483&#8211;6492</relation.references>
<relation.references>doi: 10.1074/jbc.M409876200</relation.references>
<relation.references>doi: 10.1074/jbc.274.10.6483</relation.references>
<relation.references>Wostyn P, Audenaert K, De Deyn PP (2008) Alzheimer&#8217;s disease-related changes in diseases characterized by elevation of intracranial or intraocular pressure. Clin Neurol Neurosurg 110:101&#8211;109</relation.references>
<relation.references>Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer&#8217;s disease. Nature 408:982&#8211;985</relation.references>
<relation.references>doi: 10.1038/35050116</relation.references>
<relation.references>Blanks JC, Torigoe Y, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer&#8217;s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging 17:377&#8211;384</relation.references>
<relation.references>Morin PJ, Abraham CR, Amaratunga A, Johnson RJ, Huber G, Sandell JH, Fine RE (1993) Amyloid precursor protein is synthesized by retinal ganglion cells, rapidly transported to the optic nerve plasma membrane and nerve terminals, and metabolized. J Neurochem 61:464&#8211;473</relation.references>
<relation.references>Tamura H, Kawakami H, Kanamoto T, Kato T, Yokoyama T, Sasaki K, Izumi Y, Matsumoto M, Mishima HK (2006) High frequency of open-angle glaucoma in Japanese patients with Alzheimer&#8217;s disease. J Neurol Sci 246:79&#8211;83</relation.references>
<relation.references>Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92:905&#8211;909</relation.references>
<relation.references>doi: 10.1038/416535a</relation.references>
<relation.references>doi: 10.2174/092986709788682047</relation.references>
<relation.references>doi: 10.1111/j.1471-4159.1993.tb02147.x</relation.references>
<relation.references>Margrain TH, Boulton M, Marshall J, Sliney DH (2004) Do blue light filters confer protection against age-related macular degeneration? Prog Retin Eye Res 23:523&#8211;531</relation.references>
<relation.references>Ning A, Cui J, To E, Ashe KH, Matsubara J (2008) Amyloid-beta deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Vis Sci 49:5136&#8211;5143</relation.references>
<relation.references>doi: 10.1016/j.clineuro.2007.10.011</relation.references>
<relation.references>doi: 10.1167/iovs.08-1849</relation.references>
<relation.references>Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, Chen Y, Zhang K, Ambati BK, Baffi JZ, Ambati J (2006) Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci USA 103:2328&#8211;2333</relation.references>
<relation.references>doi: 10.1073/pnas.0408835103</relation.references>
<relation.references>Ding JD, Lin J, Mace BE, Herrmann R, Sullivan P, Bowes Rickman C (2008) Targeting age-related macular degeneration with Alzheimer&#8217;s disease based immunotherapies: anti-amyloid-beta antibody attenuates pathologies in an age-related macular degeneration mouse model. Vision Res 48:339&#8211;345</relation.references>
<relation.references>doi: 10.1172/JCI24635</relation.references>
<relation.references>O&#8217;Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, Lichtenthaler SF, H&#233;bert SS, De Strooper B, Haass C, Bennett DA, Vassar R (2008) Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 60:988&#8211;1009</relation.references>
<relation.references>Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X (2010) A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer&#8217;s disease. J Alz Dis 20(Suppl 2):S401&#8211;S412</relation.references>
<relation.references>doi: 10.1016/j.neuron.2008.10.047</relation.references>
<relation.references>Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer&#8217;s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409&#8211;421</relation.references>
<relation.references>Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002a) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535&#8211;539</relation.references>
<relation.references>doi: 10.1016/S0896-6273(03)00434-3</relation.references>
<relation.references>Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892&#8211;5901</relation.references>
<relation.references>Chiu K, Chan HC, Yeung SC, Yuen WH, Zee SY, Chang RCC, So KF (2009) Modulation of microglia by wolfberry on the survival of retinal ganglion cells in a rat ocular hypertension model. J Ocul Biol Dis Infor 2:127&#8211;136</relation.references>
<relation.references>Zahs KR, Ashe KH (2010) &#8216;Too much good news&#8217;&#8212;are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer&#8217;s disease? Trends Neurosci 33:381&#8211;389</relation.references>
<relation.references>Hintersteiner M, Enz A, Frey P, Jaton AL, Kinzy W, Kneuer R, Neumann U, Rudin M, Staufenbiel M, Stoeckli M, Wiederhold KH, Gremlich HU (2005) In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. Nat Biotechnol 23:577&#8211;583</relation.references>
<relation.references>doi: 10.1073/pnas.0808953105</relation.references>
<relation.references>Ohyagi Y, Asahara H, Chui DH, Tsuruta Y, Sakae N, Miyoshi K, Yamada T, Kikuchi H, Taniwaki T, Murai H, Ikezoe K, Furuya H, Kawarabayashi T, Shoji M, Checler F, Iwaki T, Makifuchi T, Takeda K, Kira J, Tabira T (2005) Intracellular A&#223;42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer&#8217;s disease. FASEB J 19:255&#8211;257</relation.references>
<relation.references>Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ (2007) Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 102:1095&#8211;1104</relation.references>
<relation.references>Price DL, Sisodia SS (1998) Mutant genes in familial Alzheimer&#8217;s disease and transgenic models. Annu Rev Neurosci 21:479&#8211;505</relation.references>
<relation.references>Scattoni ML, Gasparini L, Alleva E, Goedert M, Calamandrei G, Spillantini MG (2010) Early behavioural markers of disease in P301S tau transgenic mice. Behav Brain Res 208:250&#8211;257</relation.references>
<relation.references>doi: 10.1146/annurev.neuro.21.1.479</relation.references>
<relation.references>Price DL, Sisodia SS, Borchelt DR (1998a) Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282:1079&#8211;1083</relation.references>
<relation.references>doi: 10.1126/science.282.5391.1079</relation.references>
<relation.references>Gau JT, Steinhilb ML, Kao TC, D&#8217;Amato CJ, Gaut JR, Frey KA, Turner RS (2002) Stable beta-secretase activity and presynaptic cholinergic markers during progressive central nervous system amyloidogenesis in Tg2576 mice. Am J Pathol 160:731&#8211;738</relation.references>
<relation.references>doi: 10.1167/iovs.06-1029</relation.references>
<relation.references>Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122:598&#8211;614</relation.references>
<relation.references>Price DL, Tanzi RE, Borchelt DR, Sisodia SS (1998b) Alzheimer&#8217;s disease: genetic studies and transgenic models. Annu Rev Genet 32:461&#8211;493</relation.references>
<relation.references>doi: 10.1007/s12177-009-9035-5</relation.references>
<relation.references>doi: 10.1146/annurev.genet.32.1.461</relation.references>
<relation.references>Rizzo M, Anderson SW, Dawson J, Nawrot M (2000) Vision and cognition in Alzheimer&#8217;s disease. Neuropsychologia 38:1157&#8211;1169</relation.references>
<relation.references>Yu MS, Lai CS, Ho YS, Zee SY, So KF, Yuen WH, Chang RCC (2007) Characterization of the effects of anti-aging medicine Fructus lycii on beta-amyloid peptide neurotoxicity. Int J Mol Med 20:261&#8211;268</relation.references>
<relation.references>doi: 10.1016/S0028-3932(00)00023-3</relation.references>
<relation.references>Shimazawa M, Ito Y, Inokuchi Y, Hara H (2007) Involvement of Double-Stranded RNA-Dependent Protein Kinase in ER Stress-Induced Retinal Neuron Damage. Invest Ophthalmol Vis Sci 48:3729&#8211;3736</relation.references>
<relation.references>doi: 10.1111/j.1471-4159.2007.04613.x</relation.references>
<relation.references>Carelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23:53&#8211;89</relation.references>
<relation.references>Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG (2001) Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer&#8217;s disease. J Neurosci 21:372&#8211;381</relation.references>
<relation.references>doi: 10.1016/j.bmcl.2010.09.029</relation.references>
<relation.references>Walsh DT, Montero RM, Bresciani LG, Jen AY, Leclercq PD, Saunders D, EL-Amir AN, Gbadamoshi L, Gentleman SM, Jen LS (2002b) Amyloid-beta peptide is toxic to neurons in vivo via indirect mechanisms. Neurobiol Dis 10:20&#8211;27</relation.references>
<relation.references>Rodrigues EB (2007) Inflammation in dry age-related macular degeneration. Ophthalmologica 221:143&#8211;152</relation.references>
<relation.references>doi: 10.1111/j.1600-0420.1996.tb00090.x</relation.references>
<relation.references>Seo AY, Joseph A-M, Dutta D, Hwang JCY, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123:2533&#8211;2542</relation.references>
<relation.references>Chiu K, Zhou Y, Yeung SC, Lok CK, Chan OO, Chang RCC, So KF, Chiu JF (2010) Up-regulation of crystallins is involved in the neuroprotective effect of wolfberry on survival of retinal ganglion cells in rat ocular hypertension model. J Cell Biochem 110:311&#8211;320</relation.references>
<relation.references>doi: 10.1242/jcs.070490</relation.references>
<relation.references>Spires TL, Hyman BT (2005) Transgenic models of Alzheimer&#8217;s disease: learning from animals. NeuroRx 2:423&#8211;437</relation.references>
<relation.references>doi: 10.1602/neurorx.2.3.423</relation.references>
<relation.references>doi: 10.1007/s10571-009-9419-x</relation.references>
<relation.references>Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051&#8211;1063</relation.references>
<relation.references>doi: 10.1016/j.visres.2007.07.025</relation.references>
<relation.references>Caroni P (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71:3&#8211;9</relation.references>
<relation.references>doi: 10.1083/jcb.200108057</relation.references>
<relation.references>doi: 10.1016/j.jalz.2007.04.381</relation.references>
<relation.references>doi: 10.1016/j.tins.2010.05.004</relation.references>
<relation.references>doi: 10.1016/j.jns.2006.02.009</relation.references>
<relation.references>doi: 10.1167/iovs.06-0573</relation.references>
<relation.references>doi: 10.1006/nbdi.2002.0485</relation.references>
<relation.references>doi: 10.1016/j.neurobiolaging.2009.03.002</relation.references>
<relation.references>Wan J, Fu AK, Ip FC, Ng HK, Hugon J, Page G, Wang JH, Lai KO, Wu Z, Ip NY (2010) Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: implications in Alzheimer&#8217;s disease. J Neurosci 30:6873&#8211;6881</relation.references>
<relation.references>doi: 10.1523/JNEUROSCI.0519-10.2010</relation.references>
<relation.references>Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA, Trommer BL (2002) Soluble oligomers of beta amyloid (1&#8211;42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133&#8211;140</relation.references>
<relation.references>Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, Bergstr&#246;m M, Savitcheva I, Huang GF, Estrada S, Aus&#233;n B, Debnath ML, Barletta J, Price JC, Sandell J, Lopresti BJ, Wall A, Koivisto P, Antoni G, Mathis CA, L&#229;ngstr&#246;m B (2004) Imaging brain amyloid in Alzheimer&#8217;s disease with Pittsburgh compound-B. Ann Neurol 55:306&#8211;319</relation.references>
<relation.references>doi: 10.1016/S0006-8993(01)03058-X</relation.references>
<relation.references>Jimenez S, Baglietto-Vargas D, Caballero C, Moreno-Gonzalez I, Torres M, Sanchez-Varo R, Ruano D, Vizuete M, Gutierrez A, Vitorica J (2008) Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer&#8217;s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci 28:11650&#8211;11661</relation.references>
<relation.references>doi: 10.1016/S0002-9440(10)64893-6</relation.references>
<relation.references>doi: 10.1016/S0165-0270(96)00121-5</relation.references>
<relation.references>Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer&#8217;s disease. J Neurosci 29:9090&#8211;9103</relation.references>
<relation.references>Terwel D, Lasrado R, Snauwaert J, Vandeweert E, Van Haesendonck C, Borghgraef P, Van Leuven F (2005) Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice. J Biol Chem 280:3963&#8211;3973</relation.references>
<relation.references>doi: 10.1016/j.preteyeres.2003.10.003</relation.references>
<relation.references>doi: 10.1074/jbc.M404751200</relation.references>
<relation.references>Malamas MS, Robichaud A, Erdei J, Quagliato D, Solvibile W, Zhou P, Morris K, Turner J, Wagner E, Fan K, Olland A, Jacobsen S, Reinhart P, Riddell D, Pangalos M (2010) Design and synthesis of aminohydantoins as potent and selective human beta-secretase (BACE1) inhibitors with enhanced brain permeability. Bioorg Med Chem Lett 20:6597&#8211;6605</relation.references>
<relation.references>doi: 10.1001/archopht.122.4.598</relation.references>
<relation.references>Ho YS, Yu MS, Yik SY, So KF, Yuen WH, Chang RCC (2009) Polysaccharides from wolfberry antagonizes glutamate excitotoxicity in rat cortical neurons. Cell Mol Neurobiol 29:1233&#8211;1244</relation.references>
<relation.references>Chang RCC, Suen KC, Ma CH, Elyaman W, Ng HK, Hugon J (2002a) Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2 alpha in neuronal degeneration. J Neurochem 83:1215&#8211;1225</relation.references>
<relation.references>doi: 10.1523/JNEUROSCI.3024-08.2008</relation.references>
<relation.references>Chang RCC, Wong AKY, Ng HK, Hugon J (2002b) Phosphorylation of eukaryotic initiation factor-2 alpha (eIF2 alpha) is associated with neuronal degeneration in Alzheimer&#8217;s disease. Neuroreport 13:2429&#8211;2432</relation.references>
<relation.references>Cordeiro MF, Guo L, Coxon KM, Duggan J, Nizari S, Normando EM, Sensi SL, Sillito AM, Fitzke FW, Salt TE, Moss SE (2010) Imaging multiple phases of neurodegeneration: a novel approach to assessing cell death in vivo. Cell Death Dis 1:e3</relation.references>
<relation.references>McKinnon SJ (2003) Glaucoma: ocular Alzheimer&#8217;s disease? Front Biosci 8:s1140&#8211;s1156</relation.references>
<relation.references>Garcia MF, Gordon MN, Hutton M, Lewis J, McGowan E, Dickey CA, Morgan D, Arendash GW (2004) The retinal degeneration (rd) gene seriously impairs spatial cognitive performance in normal and Alzheimer&#8217;s transgenic mice. Neuroreport 15:73&#8211;77</relation.references>
<relation.references>Liu X, Hajnoczky G (2009) Ca2+&#8722;dependent regulation of mitochondrial dynamics by the Miro&#8211;Milton complex. Int J Biochem Cell Biol 41:1972&#8211;1976</relation.references>
<relation.references>Ho YS, So KF, Chang RCC (2010b) Anti-aging herbal medicine&#8212;how and why can they be used in aging-associated neurodegenerative diseases? Ageing Res Rev 9:354&#8211;362</relation.references>
<relation.references>Dutescu RM, Li QX, Crowston J, Masters CL, Baird PN, Culvenor JG (2009) Amyloid precursor protein processing and retinal pathology in mouse models of Alzheimer&#8217;s disease. Graefes Arch Clin Exp Ophthalmol 247:1213&#8211;1221</relation.references>
<relation.references>Gruart A, Lopez-Ramos JC, Munoz MD, Delgado-Garcia JM (2008) Aged wild-type and APP, PS1, and APP + PS1 mice present similar deficits in associative learning and synaptic plasticity independent of amyloid load. Neurobiol Dis 30:439&#8211;450</relation.references>
<relation.references>Yoshida T, Ohno-Matsui K, Ichinose S, Sato T, Iwata N, Saido TC, Hisatomi T, Mochizuki M, Morita I (2005) The potential role of amyloid beta in the pathogenesis of age-related macular degeneration. J Clin Invest 115:2793&#8211;2800</relation.references>
<relation.references>Suen KC, Yu MS, So KF, Chang RCC, Hugon J (2003) Upstream signaling pathways leading to the activation of double-stranded RNA-dependent serine/threonine protein kinase in {beta}-amyloid peptide neurotoxicity. J Biol Chem 278:49819&#8211;49827</relation.references>
<relation.references>Johnson LV, Leitner WP, Rivest AJ, Staples MK, Radeke MJ, Anderson DH (2002) The Alzheimer&#8217;s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci USA 99:11830&#8211;11835</relation.references>
<relation.references>Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, Carlson GA, Younkin SG, Ashe KH (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer&#8217;s disease. J Neurosci 22:1858&#8211;1867</relation.references>
<relation.references>Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, van de Steeg E, Ret G, Canton T, Drobecq H, Clark A, Bonici B, Delacourte A, Benavides J, Schmitz C, Tremp G, Bayer TA, Benoit P, Pradier L (2004) Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 165:1289&#8211;1300</relation.references>
<relation.references>doi: 10.1016/S0002-9440(10)63388-3</relation.references>
<relation.references>doi: 10.1016/S0166-4328(99)00037-6</relation.references>
<relation.references>Chan HC, Chang RCC, Koon-Ching Ip A, Chiu K, Yuen WH, Zee SY, So KF (2007) Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp Neurol 203:269&#8211;273</relation.references>
<relation.references>doi: 10.1016/j.biocel.2009.05.013</relation.references>
<relation.references>doi: 10.1016/j.expneurol.2006.05.031</relation.references>
<relation.references>Chiu K, Lam TT, Ying Li WW, Caprioli J, Kwong JM (2005) Calpain and N-methyl-d-aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Res 1046:207&#8211;215</relation.references>
<relation.references>Ho YS, Yu MS, Yang XF, So KF, Yuen WH, Chang RCC (2010a) Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J Alzheimers Dis 19:813&#8211;827</relation.references>
<relation.references>doi: 10.1016/j.brainres.2005.04.016</relation.references>
<relation.references>doi: 10.1073/pnas.192203399</relation.references>
<relation.references>Muyllaert D, Kremer A, Jaworski T, Borghgraef P, Devijver H, Croes S, Dewachter I, Van Leuven F (2008) Glycogen synthase kinase-3beta, or a link between amyloid and tau pathology? Genes Brain Behav 7(Suppl 1):57&#8211;66</relation.references>
<relation.references>Kong GY, Van Bergen NJ, Trounce IA, Crowston JG (2009) Mitochondrial dysfunction and glaucoma. J Glaucoma 18:93&#8211;100</relation.references>
<relation.references>Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT, Hageman GS, Dean M, Allikmets R, AMD Genetics Clinical Study Group (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38:458&#8211;462</relation.references>
<relation.references>Chiu K, Chang RCC, So KF (2007) Intravitreous injection for establishing ocular diseases model. J Vis Exp 8:313</relation.references>
<relation.references>Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL (2007) Retinal abnormalities in early Alzheimer&#8217;s disease. Invest Ophthalmol Vis Sci 48:2285&#8211;2289</relation.references>
<relation.references>doi: 10.1007/s00417-009-1060-3</relation.references>
<relation.references>Liu B, Rasool S, Yang Z, Glabe CG, Schreiber SS, Ge J, Tan Z (2009) Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer&#8217;s transgenic mice. Am J Pathol 175:2099&#8211;2110</relation.references>
<relation.references>Duyckaerts C, Potier MC, Delatour B (2008) Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:5&#8211;38</relation.references>
<relation.references>doi: 10.1007/s00401-007-0312-8</relation.references>
<relation.references>Eriksen JL, Janus CG (2007) Plaques, tangles, and memory loss in mouse models of neurodegeneration. Behav Genet 37:79&#8211;100</relation.references>
<relation.references>doi: 10.1167/iovs.08-2384</relation.references>
<relation.references>doi: 10.1016/j.preteyeres.2004.05.001</relation.references>
<relation.references>doi: 10.1007/s10519-006-9118-z</relation.references>
<relation.references>Nakada T, Matsuzawa H, Igarashi H, Fujii Y, Kwee IL (2008) In vivo visualization of senile-plaque-like pathology in Alzheimer&#8217;s disease patients by MR microscopy on a 7T system. J Neuroimaging 18:125&#8211;129</relation.references>
<relation.references>Frank S, Clavaguera F, Tolnay M (2008) Tauopathy models and human neuropathology: similarities and differences. Acta Neuropathol 115:39&#8211;53</relation.references>
<relation.references>doi: 10.1007/s00401-007-0291-9</relation.references>
<relation.references>doi: 10.1002/ana.20009</relation.references>
<relation.references>Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, Prada C, Greenberg SM, Bacskai BJ, Frosch MP (2006) Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis 24:516&#8211;524</relation.references>
<relation.references>doi: 10.2353/ajpath.2009.090159</relation.references>
<relation.references>Patel M, Chan CC (2008) Immunopathological aspects of age-related macular degeneration. Semin Immunopathol 30:97&#8211;110</relation.references>
<relation.references>McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, Merges CA, Pease ME, Kerrigan DF, Ransom NL, Tahzib NG, Reitsamer HA, Levkovitch-Verbin H, Quigley HA, Zack DJ (2002) Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci 43:1077&#8211;1087</relation.references>
<relation.references>doi: 10.4061/2010/417314</relation.references>
<relation.references>doi: 10.1016/j.arr.2009.10.001</relation.references>
<relation.references>doi: 10.1016/j.nbd.2006.08.017</relation.references>
<relation.references>doi: 10.1159/000099293</relation.references>
<relation.references>doi: 10.1038/ng1750</relation.references>
<relation.references>doi: 10.1111/j.1552-6569.2007.00179.x</relation.references>
<relation.references>Grundke-Iqbal I, Iqbal K, George L, Tung YC, Kim KS, Wisniewski HM (1989) Amyloid protein and neurofibrillary tangles coexist in the same neuron in Alzheimer disease. Proc Natl Acad Sci USA 86:2853&#8211;2857</relation.references>
<relation.references>doi: 10.1073/pnas.86.8.2853</relation.references>
<relation.references>Guo L, Salt TE et al (2007) Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci USA 104:13444&#8211;13449</relation.references>
<relation.references>doi: 10.1002/glia.440030605</relation.references>
<relation.references>doi: 10.1073/pnas.0703707104</relation.references>
<relation.references>Mey J, Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602:304&#8211;317</relation.references>
<relation.references>Guo L, Duggan J, Cordeiro MF (2010) Alzheimer&#8217;s disease and retinal neurodegeneration. Curr Alzheimer Res 7:3&#8211;14</relation.references>
<identifier.volume>34</identifier.volume>
<identifier.issue>3</identifier.issue>
<identifier.spage>1</identifier.spage>
<identifier.spage>633</identifier.spage>
<identifier.epage>17</identifier.epage>
<identifier.epage>649</identifier.epage>
<identifier.eissn>1574-4647</identifier.eissn>
<identifier.isi>WOS:000303507400010</identifier.isi>
<publisher.place>Netherlands</publisher.place>
<description.other>Springer Open Choice, 21 Feb 2012</description.other>
<identifier.citeulike>9313839</identifier.citeulike>
<bitstream.url>http://hub.hku.hk/bitstream/10722/135016/2/Content.pdf</bitstream.url>
</item>
Author Affiliations
  1. The University of Hong Kong