File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1038/35087069
- Scopus: eid_2-s2.0-0034896955
- PMID: 11483961
- WOS: WOS:000170393200021
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Nicastrin binds to membrane-tethered Notch
Title | Nicastrin binds to membrane-tethered Notch |
---|---|
Authors | |
Issue Date | 2001 |
Publisher | Nature Publishing Group. The Journal's web site is located at http://www.nature.com/naturecellbiology |
Citation | Nature Cell Biology, 2001, v. 3 n. 8, p. 751-754 How to Cite? |
Abstract | The presenilins 1,2 and nicastrin 3, a type 1 transmembrane glycoprotein, form high molecular weight complexes that are involved in cleaving the β-amyloid precursor protein (βAPP) 3-7 and Notch 8-11 in their transmembrane domains. The former process (termed γ-secretase cleavage) generates amyloid β-peptide (Aβ), which is involved in the pathogenesis of Alzheimer's disease. The latter process (termed S3-site cleavage) generates Notch intracellular domain (NICD), which is involved in intercellular signalling. Nicastrin binds both full-length βAPP and the substrates of γ-secretase (C99- and C83-βAPP fragments), and modulates the activity of γ-secretase. Although absence of the Caenorhabditis elegans nicastrin homologue (aph-2) is known to cause an embryonic-lethal glp-1 phenotype 3,12, the role of nicastrin in this process has not been explored. Here we report that nicastrin binds to membrane-tethered forms of Notch (substrates for S3-site cleavage of Notch), and that, although mutations in the conserved 312-369 domain of nicastrin strongly modulate γ-secretase, they only weakly modulate the S3-site cleavage of Notch. Thus, nicastrin has a similar role in processing Notch and βAPP, but the 312-369 domain may have differential effects on these activities. In addition, we report that the Notch and βAPP pathways do not significantly compete with each other. |
Persistent Identifier | http://hdl.handle.net/10722/134746 |
ISSN | 2023 Impact Factor: 17.3 2023 SCImago Journal Rankings: 8.913 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, F | en_HK |
dc.contributor.author | Yu, G | en_HK |
dc.contributor.author | Arawaka, S | en_HK |
dc.contributor.author | Nishimura, M | en_HK |
dc.contributor.author | Kawarai, T | en_HK |
dc.contributor.author | Yu, H | en_HK |
dc.contributor.author | Tandon, A | en_HK |
dc.contributor.author | Supala, A | en_HK |
dc.contributor.author | Song, YQ | en_HK |
dc.contributor.author | Rogaeva, E | en_HK |
dc.contributor.author | Milman, P | en_HK |
dc.contributor.author | Sato, C | en_HK |
dc.contributor.author | Yu, C | en_HK |
dc.contributor.author | Janus, C | en_HK |
dc.contributor.author | Lee, J | en_HK |
dc.contributor.author | Song, L | en_HK |
dc.contributor.author | Zhang, L | en_HK |
dc.contributor.author | Fraser, PE | en_HK |
dc.contributor.author | St GeorgeHyslop, PH | en_HK |
dc.date.accessioned | 2011-07-14T07:02:33Z | - |
dc.date.available | 2011-07-14T07:02:33Z | - |
dc.date.issued | 2001 | en_HK |
dc.identifier.citation | Nature Cell Biology, 2001, v. 3 n. 8, p. 751-754 | en_HK |
dc.identifier.issn | 1465-7392 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/134746 | - |
dc.description.abstract | The presenilins 1,2 and nicastrin 3, a type 1 transmembrane glycoprotein, form high molecular weight complexes that are involved in cleaving the β-amyloid precursor protein (βAPP) 3-7 and Notch 8-11 in their transmembrane domains. The former process (termed γ-secretase cleavage) generates amyloid β-peptide (Aβ), which is involved in the pathogenesis of Alzheimer's disease. The latter process (termed S3-site cleavage) generates Notch intracellular domain (NICD), which is involved in intercellular signalling. Nicastrin binds both full-length βAPP and the substrates of γ-secretase (C99- and C83-βAPP fragments), and modulates the activity of γ-secretase. Although absence of the Caenorhabditis elegans nicastrin homologue (aph-2) is known to cause an embryonic-lethal glp-1 phenotype 3,12, the role of nicastrin in this process has not been explored. Here we report that nicastrin binds to membrane-tethered forms of Notch (substrates for S3-site cleavage of Notch), and that, although mutations in the conserved 312-369 domain of nicastrin strongly modulate γ-secretase, they only weakly modulate the S3-site cleavage of Notch. Thus, nicastrin has a similar role in processing Notch and βAPP, but the 312-369 domain may have differential effects on these activities. In addition, we report that the Notch and βAPP pathways do not significantly compete with each other. | en_HK |
dc.publisher | Nature Publishing Group. The Journal's web site is located at http://www.nature.com/naturecellbiology | en_HK |
dc.relation.ispartof | Nature Cell Biology | en_HK |
dc.subject.mesh | Alzheimer Disease/metabolism | en_US |
dc.subject.mesh | Amyloid Precursor Protein Secretases | en_US |
dc.subject.mesh | Amyloid beta-Peptides/biosynthesis/genetics | en_US |
dc.subject.mesh | Amyloid beta-Protein Precursor/genetics/*metabolism | en_US |
dc.subject.mesh | Aspartic Acid Endopeptidases | en_US |
dc.subject.mesh | Binding Sites/physiology | en_US |
dc.subject.mesh | Cell Membrane/*metabolism/ultrastructure | en_US |
dc.subject.mesh | Cells, Cultured/cytology/metabolism | en_US |
dc.subject.mesh | Endopeptidases/genetics/metabolism | en_US |
dc.subject.mesh | Humans | en_US |
dc.subject.mesh | Membrane Glycoproteins/genetics/*metabolism | en_US |
dc.subject.mesh | Membrane Proteins/genetics/*metabolism | en_US |
dc.subject.mesh | Mutation/physiology | en_US |
dc.subject.mesh | Protein Structure, Tertiary/physiology | en_US |
dc.subject.mesh | Receptors, Notch | en_US |
dc.subject.mesh | Signal Transduction/*physiology | en_US |
dc.subject.mesh | Transfection | en_US |
dc.title | Nicastrin binds to membrane-tethered Notch | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Song, YQ:songy@hkucc.hku.hk | en_HK |
dc.identifier.authority | Song, YQ=rp00488 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1038/35087069 | en_HK |
dc.identifier.pmid | 11483961 | - |
dc.identifier.scopus | eid_2-s2.0-0034896955 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0034896955&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 3 | en_HK |
dc.identifier.issue | 8 | en_HK |
dc.identifier.spage | 751 | en_HK |
dc.identifier.epage | 754 | en_HK |
dc.identifier.isi | WOS:000170393200021 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Chen, F=7404907428 | en_HK |
dc.identifier.scopusauthorid | Yu, G=35370376900 | en_HK |
dc.identifier.scopusauthorid | Arawaka, S=6602984633 | en_HK |
dc.identifier.scopusauthorid | Nishimura, M=7403650959 | en_HK |
dc.identifier.scopusauthorid | Kawarai, T=7003632751 | en_HK |
dc.identifier.scopusauthorid | Yu, H=23092412900 | en_HK |
dc.identifier.scopusauthorid | Tandon, A=7103281816 | en_HK |
dc.identifier.scopusauthorid | Supala, A=6602797868 | en_HK |
dc.identifier.scopusauthorid | Song, YQ=7404921212 | en_HK |
dc.identifier.scopusauthorid | Rogaeva, E=35372614800 | en_HK |
dc.identifier.scopusauthorid | Milman, P=7004252433 | en_HK |
dc.identifier.scopusauthorid | Sato, C=7201887342 | en_HK |
dc.identifier.scopusauthorid | Yu, C=7404977928 | en_HK |
dc.identifier.scopusauthorid | Janus, C=7005274261 | en_HK |
dc.identifier.scopusauthorid | Lee, J=36152832100 | en_HK |
dc.identifier.scopusauthorid | Song, L=7402537737 | en_HK |
dc.identifier.scopusauthorid | Zhang, L=9280030900 | en_HK |
dc.identifier.scopusauthorid | Fraser, PE=35408135200 | en_HK |
dc.identifier.scopusauthorid | St GeorgeHyslop, PH=7005637468 | en_HK |
dc.identifier.issnl | 1465-7392 | - |