File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.crma.2004.09.022
- Scopus: eid_2-s2.0-26844445320
- WOS: WOS:000225803200008
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Tail of a linear diffusion with Markov switching
Title | Tail of a linear diffusion with Markov switching |
---|---|
Authors | |
Issue Date | 2004 |
Publisher | Elsevier France, Editions Scientifiques et Medicales. The Journal's web site is located at http://www.elsevier.com/locate/crma |
Citation | Comptes Rendus Mathematique, 2004, v. 339 n. 9, p. 643-646 How to Cite? |
Abstract | Let Y be a Ornstein-Uhlenbeck diffusion governed by a stationary and ergodic Markov jump process X, i.e. d Yt = a (Xt) Yt dt + σ (Xt) d Wt, Y0 = y0. Ergodicity conditions for Y have been obtained. Here we investigate the tail property of the stationary distribution of this model. A characterization of the only two possible cases is established: light tail or polynomial tail. Our method is based on discretizations and renewal theory. © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/132626 |
ISSN | 2023 Impact Factor: 0.8 2023 SCImago Journal Rankings: 0.669 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | de Saporta, B | en_HK |
dc.contributor.author | Yao, JF | en_HK |
dc.date.accessioned | 2011-03-28T09:27:05Z | - |
dc.date.available | 2011-03-28T09:27:05Z | - |
dc.date.issued | 2004 | en_HK |
dc.identifier.citation | Comptes Rendus Mathematique, 2004, v. 339 n. 9, p. 643-646 | en_HK |
dc.identifier.issn | 1631-073X | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/132626 | - |
dc.description.abstract | Let Y be a Ornstein-Uhlenbeck diffusion governed by a stationary and ergodic Markov jump process X, i.e. d Yt = a (Xt) Yt dt + σ (Xt) d Wt, Y0 = y0. Ergodicity conditions for Y have been obtained. Here we investigate the tail property of the stationary distribution of this model. A characterization of the only two possible cases is established: light tail or polynomial tail. Our method is based on discretizations and renewal theory. © 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved. | en_HK |
dc.language | eng | en_US |
dc.publisher | Elsevier France, Editions Scientifiques et Medicales. The Journal's web site is located at http://www.elsevier.com/locate/crma | en_HK |
dc.relation.ispartof | Comptes Rendus Mathematique | en_HK |
dc.title | Tail of a linear diffusion with Markov switching | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Yao, JF: jeffyao@hku.hk | en_HK |
dc.identifier.authority | Yao, JF=rp01473 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1016/j.crma.2004.09.022 | en_HK |
dc.identifier.scopus | eid_2-s2.0-26844445320 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-26844445320&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 339 | en_HK |
dc.identifier.issue | 9 | en_HK |
dc.identifier.spage | 643 | en_HK |
dc.identifier.epage | 646 | en_HK |
dc.identifier.isi | WOS:000225803200008 | - |
dc.publisher.place | France | en_HK |
dc.identifier.scopusauthorid | de Saporta, B=6506197682 | en_HK |
dc.identifier.scopusauthorid | Yao, JF=7403503451 | en_HK |
dc.identifier.issnl | 1631-073X | - |