File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s10255-006-0306-7
- Scopus: eid_2-s2.0-33645661531
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: On the spectral distribution of Gaussian random matrices
Title | On the spectral distribution of Gaussian random matrices |
---|---|
Authors | |
Keywords | Convergence rate Empirical spectral distribution Random matrices Wigner distribution |
Issue Date | 2006 |
Publisher | Springer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/10255/ |
Citation | Acta Mathematicae Applicatae Sinica, 2006, v. 22 n. 2, p. 297-312 How to Cite? |
Abstract | We consider the empirical spectral distribution (ESD) of a random matrix from the Gaussian Unitary Ensemble. Based on the Plancherel-Rotach approximation formula for Hermite polynomials, we prove that the expected empirical spectral distribution converges at the rate of O(n -1) to the Wigner distribution function uniformly on every compact intervals [u, v] within the limiting support (-1, 1). Furthermore, the variance of the ESD for such an interval is proved to be (πn)-2 log n asymptotically which surprisingly enough, does not depend on the details (e. g. length or location) of the interval. This property allows us to determine completely the covariance function between the values of the ESD on two intervals. © Springer-Verlag 2006. |
Persistent Identifier | http://hdl.handle.net/10722/132619 |
ISSN | 2023 Impact Factor: 0.9 2023 SCImago Journal Rankings: 0.269 |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Delyon, B | en_HK |
dc.contributor.author | Yao, J | en_HK |
dc.date.accessioned | 2011-03-28T09:27:03Z | - |
dc.date.available | 2011-03-28T09:27:03Z | - |
dc.date.issued | 2006 | en_HK |
dc.identifier.citation | Acta Mathematicae Applicatae Sinica, 2006, v. 22 n. 2, p. 297-312 | en_HK |
dc.identifier.issn | 0168-9673 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/132619 | - |
dc.description.abstract | We consider the empirical spectral distribution (ESD) of a random matrix from the Gaussian Unitary Ensemble. Based on the Plancherel-Rotach approximation formula for Hermite polynomials, we prove that the expected empirical spectral distribution converges at the rate of O(n -1) to the Wigner distribution function uniformly on every compact intervals [u, v] within the limiting support (-1, 1). Furthermore, the variance of the ESD for such an interval is proved to be (πn)-2 log n asymptotically which surprisingly enough, does not depend on the details (e. g. length or location) of the interval. This property allows us to determine completely the covariance function between the values of the ESD on two intervals. © Springer-Verlag 2006. | en_HK |
dc.language | eng | en_US |
dc.publisher | Springer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/10255/ | en_HK |
dc.relation.ispartof | Acta Mathematicae Applicatae Sinica | en_HK |
dc.subject | Convergence rate | en_HK |
dc.subject | Empirical spectral distribution | en_HK |
dc.subject | Random matrices | en_HK |
dc.subject | Wigner distribution | en_HK |
dc.title | On the spectral distribution of Gaussian random matrices | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Yao, J: jeffyao@hku.hk | en_HK |
dc.identifier.authority | Yao, J=rp01473 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1007/s10255-006-0306-7 | en_HK |
dc.identifier.scopus | eid_2-s2.0-33645661531 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-33645661531&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 22 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | 297 | en_HK |
dc.identifier.epage | 312 | en_HK |
dc.identifier.eissn | 1618-3932 | - |
dc.publisher.place | Germany | en_HK |
dc.identifier.scopusauthorid | Delyon, B=6701472779 | en_HK |
dc.identifier.scopusauthorid | Yao, J=7403503451 | en_HK |
dc.identifier.issnl | 0168-9673 | - |