File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1214/07-AIHP118
- Scopus: eid_2-s2.0-63849341672
- WOS: WOS:000256781500003
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Central limit theorems for eigenvalues in a spiked population model
Title | Central limit theorems for eigenvalues in a spiked population model |
---|---|
Authors | |
Keywords | Central limit theorems Extreme eigenvalues Largest eigenvalue Random quadratic forms Random sesquilinear forms Sample covariance matrices Spiked population model |
Issue Date | 2008 |
Publisher | Elsevier France, Editions Scientifiques et Medicales. The Journal's web site is located at http://www.elsevier.com/locate/anihpb |
Citation | Annales De L'institut Henri Poincare (B) Probability And Statistics, 2008, v. 44 n. 3, p. 447-474 How to Cite? |
Abstract | In a spiked population model, the population covariance matrix has all its eigenvalues equal to units except for a few fixed eigenvalues (spikes). This model is proposed by Johnstone to cope with empirical findings on various data sets. The question is to quantify the effect of the perturbation caused by the spike eigenvalues. A recent work by Baik and Silverstein establishes the almost sure limits of the extreme sample eigenvalues associated to the spike eigenvalues when the population and the sample sizes become large. This paper establishes the limiting distributions of these extreme sample eigenvalues. As another important result of the paper, we provide a central limit theorem on random sesquilinear forms. © Association des Publications de l'Institut Henri Poincaré, 2008. |
Persistent Identifier | http://hdl.handle.net/10722/132611 |
ISSN | 2023 Impact Factor: 1.2 2023 SCImago Journal Rankings: 1.555 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bai, Z | en_HK |
dc.contributor.author | Yao, JF | en_HK |
dc.date.accessioned | 2011-03-28T09:27:00Z | - |
dc.date.available | 2011-03-28T09:27:00Z | - |
dc.date.issued | 2008 | en_HK |
dc.identifier.citation | Annales De L'institut Henri Poincare (B) Probability And Statistics, 2008, v. 44 n. 3, p. 447-474 | en_HK |
dc.identifier.issn | 0246-0203 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/132611 | - |
dc.description.abstract | In a spiked population model, the population covariance matrix has all its eigenvalues equal to units except for a few fixed eigenvalues (spikes). This model is proposed by Johnstone to cope with empirical findings on various data sets. The question is to quantify the effect of the perturbation caused by the spike eigenvalues. A recent work by Baik and Silverstein establishes the almost sure limits of the extreme sample eigenvalues associated to the spike eigenvalues when the population and the sample sizes become large. This paper establishes the limiting distributions of these extreme sample eigenvalues. As another important result of the paper, we provide a central limit theorem on random sesquilinear forms. © Association des Publications de l'Institut Henri Poincaré, 2008. | en_HK |
dc.language | eng | en_US |
dc.publisher | Elsevier France, Editions Scientifiques et Medicales. The Journal's web site is located at http://www.elsevier.com/locate/anihpb | en_HK |
dc.relation.ispartof | Annales de l'institut Henri Poincare (B) Probability and Statistics | en_HK |
dc.subject | Central limit theorems | en_HK |
dc.subject | Extreme eigenvalues | en_HK |
dc.subject | Largest eigenvalue | en_HK |
dc.subject | Random quadratic forms | en_HK |
dc.subject | Random sesquilinear forms | en_HK |
dc.subject | Sample covariance matrices | en_HK |
dc.subject | Spiked population model | en_HK |
dc.title | Central limit theorems for eigenvalues in a spiked population model | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Yao, JF: jeffyao@hku.hk | en_HK |
dc.identifier.authority | Yao, JF=rp01473 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1214/07-AIHP118 | en_HK |
dc.identifier.scopus | eid_2-s2.0-63849341672 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-63849341672&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 44 | en_HK |
dc.identifier.issue | 3 | en_HK |
dc.identifier.spage | 447 | en_HK |
dc.identifier.epage | 474 | en_HK |
dc.identifier.isi | WOS:000256781500003 | - |
dc.publisher.place | France | en_HK |
dc.identifier.scopusauthorid | Bai, Z=7202524223 | en_HK |
dc.identifier.scopusauthorid | Yao, JF=7403503451 | en_HK |
dc.identifier.issnl | 0246-0203 | - |