File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: A new estimation method for multivariate Markov chain model with application in demand predictions

TitleA new estimation method for multivariate Markov chain model with application in demand predictions
Authors
KeywordsDemand prediction
Multivariate Markov chain model
Issue Date2010
PublisherIEEE.
Citation
The 3rd International Conference on Business Intelligence and Financial Engineering (BIFE 2010), Hong Kong, 13-15 August 2010. In Proceedings of the 3rd BIFE, 2010, p. 126-130 How to Cite?
AbstractIn this paper, we propose a new estimation method for the parameters of a multivariate Markov chain model. In the new method, we calculate the correlations of the sequences first and establish multivariate Markov chain models for those positively correlated sequences. The parameters are estimated by minimizing the error of prediction. We apply the method to demand predictions for a soft-drink company in Hong Kong. Numerical experiments are given to show the effectiveness of our proposed method. © 2010 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/129748
ISBN
References

 

DC FieldValueLanguage
dc.contributor.authorZhu, DMen_HK
dc.contributor.authorChing, WKen_HK
dc.date.accessioned2010-12-23T08:41:44Z-
dc.date.available2010-12-23T08:41:44Z-
dc.date.issued2010en_HK
dc.identifier.citationThe 3rd International Conference on Business Intelligence and Financial Engineering (BIFE 2010), Hong Kong, 13-15 August 2010. In Proceedings of the 3rd BIFE, 2010, p. 126-130en_HK
dc.identifier.isbn978-1-4244-7575-9-
dc.identifier.urihttp://hdl.handle.net/10722/129748-
dc.description.abstractIn this paper, we propose a new estimation method for the parameters of a multivariate Markov chain model. In the new method, we calculate the correlations of the sequences first and establish multivariate Markov chain models for those positively correlated sequences. The parameters are estimated by minimizing the error of prediction. We apply the method to demand predictions for a soft-drink company in Hong Kong. Numerical experiments are given to show the effectiveness of our proposed method. © 2010 IEEE.en_HK
dc.languageengen_US
dc.publisherIEEE.en_US
dc.relation.ispartofProceedings of the International Conference on Business Intelligence and Financial Engineering, BIFE 2010en_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rightsInternational Conference on Business Intelligence and Financial Engineering. Copyright © IEEE.-
dc.rights©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.-
dc.subjectDemand predictionen_HK
dc.subjectMultivariate Markov chain modelen_HK
dc.titleA new estimation method for multivariate Markov chain model with application in demand predictionsen_HK
dc.typeConference_Paperen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=978-1-4244-7575-9&volume=&spage=126&epage=130&date=2010&atitle=A+new+estimation+method+for+multivariate+Markov+chain+model+with+application+in+demand+predictions-
dc.identifier.emailChing, WK:wching@hku.hken_HK
dc.identifier.authorityChing, WK=rp00679en_HK
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1109/BIFE.2010.39en_HK
dc.identifier.scopuseid_2-s2.0-78650137056en_HK
dc.identifier.hkuros176867en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-78650137056&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.spage126en_HK
dc.identifier.epage130en_HK
dc.description.otherThe 3rd International Conference on Business Intelligence and Financial Engineering (BIFE 2010), Hong Kong, 13-15 August 2010. In Proceedings of the 3rd BIFE, 2010, p. 126-130-
dc.identifier.scopusauthoridZhu, DM=7403599103en_HK
dc.identifier.scopusauthoridChing, WK=13310265500en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats