File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Conference Paper: Effective switching mode power supplies common mode noise cancellation technique with zero equipotential transformer models
  • Basic View
  • Metadata View
  • XML View
TitleEffective switching mode power supplies common mode noise cancellation technique with zero equipotential transformer models
 
AuthorsChan, YP1
Pong, MH1
Poon, NK1
Liu, CP1
 
KeywordsCommon mode noise
Construction technique
Cut-off
Equipotential lines
High conversion efficiency
 
Issue Date2010
 
PublisherIEEE.
 
CitationThe 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2010), Palm Springs, CA., 21-25 February 2010. In Proceedings of the 25th APEC, 2010, p. 571-574 [How to Cite?]
DOI: http://dx.doi.org/10.1109/APEC.2010.5433613
 
AbstractIn this paper a transformer construction technique is proposed that effectively cut off the Common Mode (CM) noise voltage passing across the isolated primary and secondary windings. This technique employs the Zero Equipotential Line theory to construct an anti-phase winding. It effectively cuts down CM noise by eliminating the noise voltage across the isolated primary and secondary windings. The concept of maintaining an equipotential line along the bobbin and quiet node connections are justified by analysis. A well considered transformer design with the proposed CM noise cancellation technique can achieve high conversion efficiency as well as good CM noise insulation. ©2010 IEEE.
 
ISSN1048-2334
 
DOIhttp://dx.doi.org/10.1109/APEC.2010.5433613
 
ISI Accession Number IDWOS:000278142300090
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorChan, YP
 
dc.contributor.authorPong, MH
 
dc.contributor.authorPoon, NK
 
dc.contributor.authorLiu, CP
 
dc.date.accessioned2010-12-23T08:40:45Z
 
dc.date.available2010-12-23T08:40:45Z
 
dc.date.issued2010
 
dc.description.abstractIn this paper a transformer construction technique is proposed that effectively cut off the Common Mode (CM) noise voltage passing across the isolated primary and secondary windings. This technique employs the Zero Equipotential Line theory to construct an anti-phase winding. It effectively cuts down CM noise by eliminating the noise voltage across the isolated primary and secondary windings. The concept of maintaining an equipotential line along the bobbin and quiet node connections are justified by analysis. A well considered transformer design with the proposed CM noise cancellation technique can achieve high conversion efficiency as well as good CM noise insulation. ©2010 IEEE.
 
dc.description.naturepublished_or_final_version
 
dc.description.otherThe 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2010), Palm Springs, CA., 21-25 February 2010. In Proceedings of the 25th APEC, 2010, p. 571-574
 
dc.identifier.citationThe 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2010), Palm Springs, CA., 21-25 February 2010. In Proceedings of the 25th APEC, 2010, p. 571-574 [How to Cite?]
DOI: http://dx.doi.org/10.1109/APEC.2010.5433613
 
dc.identifier.doihttp://dx.doi.org/10.1109/APEC.2010.5433613
 
dc.identifier.epage574
 
dc.identifier.hkuros178509
 
dc.identifier.isiWOS:000278142300090
 
dc.identifier.issn1048-2334
 
dc.identifier.openurl
 
dc.identifier.scopuseid_2-s2.0-77952127710
 
dc.identifier.spage571
 
dc.identifier.urihttp://hdl.handle.net/10722/129655
 
dc.languageeng
 
dc.publisherIEEE.
 
dc.relation.ispartofProceedings of the Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2010
 
dc.relation.referencesReferences in Scopus
 
dc.rightsIEEE Applied Power Electronics Conference and Exposition Conference Proceedings. Copyright © IEEE.
 
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License
 
dc.rights©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
 
dc.subjectCommon mode noise
 
dc.subjectConstruction technique
 
dc.subjectCut-off
 
dc.subjectEquipotential lines
 
dc.subjectHigh conversion efficiency
 
dc.titleEffective switching mode power supplies common mode noise cancellation technique with zero equipotential transformer models
 
dc.typeConference_Paper
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Chan, YP</contributor.author>
<contributor.author>Pong, MH</contributor.author>
<contributor.author>Poon, NK</contributor.author>
<contributor.author>Liu, CP</contributor.author>
<date.accessioned>2010-12-23T08:40:45Z</date.accessioned>
<date.available>2010-12-23T08:40:45Z</date.available>
<date.issued>2010</date.issued>
<identifier.citation>The 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2010), Palm Springs, CA.,  21-25 February 2010. In Proceedings of the 25th APEC, 2010, p. 571-574</identifier.citation>
<identifier.issn>1048-2334</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/129655</identifier.uri>
<description.abstract>In this paper a transformer construction technique is proposed that effectively cut off the Common Mode (CM) noise voltage passing across the isolated primary and secondary windings. This technique employs the Zero Equipotential Line theory to construct an anti-phase winding. It effectively cuts down CM noise by eliminating the noise voltage across the isolated primary and secondary windings. The concept of maintaining an equipotential line along the bobbin and quiet node connections are justified by analysis. A well considered transformer design with the proposed CM noise cancellation technique can achieve high conversion efficiency as well as good CM noise insulation. &#169;2010 IEEE.</description.abstract>
<language>eng</language>
<publisher>IEEE.</publisher>
<relation.ispartof>Proceedings of the Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2010</relation.ispartof>
<rights>IEEE Applied Power Electronics Conference and Exposition Conference Proceedings. Copyright &#169; IEEE.</rights>
<rights>Creative Commons: Attribution 3.0 Hong Kong License</rights>
<rights>&#169;2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</rights>
<subject>Common mode noise</subject>
<subject>Construction technique</subject>
<subject>Cut-off</subject>
<subject>Equipotential lines</subject>
<subject>High conversion efficiency</subject>
<title>Effective switching mode power supplies common mode noise cancellation technique with zero equipotential transformer models</title>
<type>Conference_Paper</type>
<identifier.openurl>http://library.hku.hk:4550/resserv?sid=HKU:IR&amp;issn=1048-2334&amp;volume=&amp;spage=571&amp;epage=574&amp;date=2010&amp;atitle=Effective+switching+mode+power+supplies+common+mode+noise+cancellation+technique+with+zero+equipotential+transformer+models</identifier.openurl>
<description.nature>published_or_final_version</description.nature>
<identifier.doi>10.1109/APEC.2010.5433613</identifier.doi>
<identifier.scopus>eid_2-s2.0-77952127710</identifier.scopus>
<identifier.hkuros>178509</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-77952127710&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.spage>571</identifier.spage>
<identifier.epage>574</identifier.epage>
<identifier.isi>WOS:000278142300090</identifier.isi>
<description.other>The 25th Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2010), Palm Springs, CA.,  21-25 February 2010. In Proceedings of the 25th APEC, 2010, p. 571-574</description.other>
<bitstream.url>http://hub.hku.hk/bitstream/10722/129655/1/Content.pdf</bitstream.url>
</item>
Author Affiliations
  1. The University of Hong Kong