File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1088/0004-637X/702/2/1662
- Scopus: eid_2-s2.0-70549096168
- WOS: WOS:000269245000069
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Planetary migration and eccentricity and inclination resonances in extrasolar planetary systems
Title | Planetary migration and eccentricity and inclination resonances in extrasolar planetary systems | ||||||
---|---|---|---|---|---|---|---|
Authors | |||||||
Keywords | Celestial mechanics Planetary systems Planets and satellites: general | ||||||
Issue Date | 2009 | ||||||
Publisher | Institute of Physics Publishing Ltd. The Journal's web site is located at http://iopscience.iop.org/2041-8205 | ||||||
Citation | Astrophysical Journal Letters, 2009, v. 702 n. 2, p. 1662-1672 How to Cite? | ||||||
Abstract | The differential migration of two planets due to planet-disk interaction can result in capture into the 2:1 eccentricity-type mean-motion resonances. Both the sequence of 2:1 eccentricity resonances that the system is driven through by continued migration and the possibility of a subsequent capture into the 4:2 inclination resonances are sensitive to the migration rate within the range expected for type II migration due to planet-disk interaction. If the migration rate is fast, the resonant pair can evolve into a family of 2:1 eccentricity resonances different from those found by Lee. This new family has outer orbital eccentricity e 2 ≳ 0.4-0.5, asymmetric librations of both eccentricity resonance variables, and orbits that intersect if they are exactly coplanar. Although this family exists for an inner-to-outer planet mass ratio m 1/m 2 ≳ 0.2, it is possible to evolve into this family by fast migration only for m 1/m 2 ≳ 2. Thommes and Lissauer have found that a capture into the 4:2 inclination resonances is possible only for m 1/m 2 ≲ 2. We show that this capture is also possible for m 1/m 2 ≳ 2 if the migration rate is slightly slower than that adopted by Thommes and Lissauer. There is significant theoretical uncertainty in both the sign and the magnitude of the net effect of planet-disk interaction on the orbital eccentricity of a planet. If the eccentricity is damped on a timescale comparable to or shorter than the migration timescale, e 2 may not be able to reach the values needed to enter either the new 2:1 eccentricity resonances or the 4:2 inclination resonances. Thus, if future observations of extrasolar planetary systems were to reveal certain combinations of mass ratio and resonant configuration, they would place a constraint on the strength of eccentricity damping during migration, as well as on the rate of the migration itself. © 2009 The American Astronomical Society. All rights reserved. | ||||||
Persistent Identifier | http://hdl.handle.net/10722/129163 | ||||||
ISSN | 2023 Impact Factor: 8.8 2023 SCImago Journal Rankings: 2.766 | ||||||
ISI Accession Number ID |
Funding Information: It is a pleasure to thank Stan Peale for informative discussions. This research was supported in part by NASA grant NNG06GF42G (M. H. L.) and a grant from NSERC Canada (E. W. T.). | ||||||
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, MH | en_HK |
dc.contributor.author | Thommes, EW | en_HK |
dc.date.accessioned | 2010-12-23T08:33:12Z | - |
dc.date.available | 2010-12-23T08:33:12Z | - |
dc.date.issued | 2009 | en_HK |
dc.identifier.citation | Astrophysical Journal Letters, 2009, v. 702 n. 2, p. 1662-1672 | en_HK |
dc.identifier.issn | 2041-8205 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/129163 | - |
dc.description.abstract | The differential migration of two planets due to planet-disk interaction can result in capture into the 2:1 eccentricity-type mean-motion resonances. Both the sequence of 2:1 eccentricity resonances that the system is driven through by continued migration and the possibility of a subsequent capture into the 4:2 inclination resonances are sensitive to the migration rate within the range expected for type II migration due to planet-disk interaction. If the migration rate is fast, the resonant pair can evolve into a family of 2:1 eccentricity resonances different from those found by Lee. This new family has outer orbital eccentricity e 2 ≳ 0.4-0.5, asymmetric librations of both eccentricity resonance variables, and orbits that intersect if they are exactly coplanar. Although this family exists for an inner-to-outer planet mass ratio m 1/m 2 ≳ 0.2, it is possible to evolve into this family by fast migration only for m 1/m 2 ≳ 2. Thommes and Lissauer have found that a capture into the 4:2 inclination resonances is possible only for m 1/m 2 ≲ 2. We show that this capture is also possible for m 1/m 2 ≳ 2 if the migration rate is slightly slower than that adopted by Thommes and Lissauer. There is significant theoretical uncertainty in both the sign and the magnitude of the net effect of planet-disk interaction on the orbital eccentricity of a planet. If the eccentricity is damped on a timescale comparable to or shorter than the migration timescale, e 2 may not be able to reach the values needed to enter either the new 2:1 eccentricity resonances or the 4:2 inclination resonances. Thus, if future observations of extrasolar planetary systems were to reveal certain combinations of mass ratio and resonant configuration, they would place a constraint on the strength of eccentricity damping during migration, as well as on the rate of the migration itself. © 2009 The American Astronomical Society. All rights reserved. | en_HK |
dc.language | eng | en_US |
dc.publisher | Institute of Physics Publishing Ltd. The Journal's web site is located at http://iopscience.iop.org/2041-8205 | en_HK |
dc.relation.ispartof | Astrophysical Journal Letters | en_HK |
dc.subject | Celestial mechanics | en_HK |
dc.subject | Planetary systems | en_HK |
dc.subject | Planets and satellites: general | en_HK |
dc.title | Planetary migration and eccentricity and inclination resonances in extrasolar planetary systems | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Lee, MH:mhlee@hku.hk | en_HK |
dc.identifier.authority | Lee, MH=rp00724 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1088/0004-637X/702/2/1662 | en_HK |
dc.identifier.scopus | eid_2-s2.0-70549096168 | en_HK |
dc.identifier.hkuros | 177708 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-70549096168&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 702 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | 1662 | en_HK |
dc.identifier.epage | 1672 | en_HK |
dc.identifier.eissn | 1538-4357 | - |
dc.identifier.isi | WOS:000269245000069 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Lee, MH=7409119699 | en_HK |
dc.identifier.scopusauthorid | Thommes, EW=6603411035 | en_HK |