File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Parallel cellular automata for large-scale urban simulation using load-balancing techniques
  • Basic View
  • Metadata View
  • XML View
TitleParallel cellular automata for large-scale urban simulation using load-balancing techniques
 
AuthorsLi, X2
Zhang, X1
Yeh, A1
Liu, X2
 
KeywordsCellular automata
GIS
Load-balancing
Parallel computing
Urban simulation
 
Issue Date2010
 
PublisherTaylor & Francis Ltd. The Journal's web site is located at http://www.tandf.co.uk/journals/titles/13658816.asp
 
CitationInternational Journal Of Geographical Information Science, 2010, v. 24 n. 6, p. 803-820 [How to Cite?]
DOI: http://dx.doi.org/10.1080/13658810903107464
 
AbstractCellular automata (CA), which are a kind of bottom-up approaches, can be used to simulate urban dynamics and land use changes effectively. Urban simulation usually involves a large set of GIS data in terms of the extent of the study area and the number of spatial factors. The computation capability becomes a bottleneck of implementing CA for simulating large regions. Parallel computing techniques can be applied to CA for solving this kind of hard computation problem. This paper demonstrates that the performance of large-scale urban simulation can be significantly improved by using parallel computation techniques. The proposed urban CA is implemented in a parallel framework that runs on a cluster of PCs. A large region usually consists of heterogeneous or polarized development patterns. This study proposes a line-scanning method of load balance to reduce waiting time between parallel processors. This proposed method has been tested in a fast-growing region, the Pearl River Delta. The experiments indicate that parallel computation techniques with load balance can significantly improve the applicability of CA for simulating the urban development in this large complex region. © 2010 Taylor & Francis.
 
ISSN1365-8816
2013 Impact Factor: 1.479
 
DOIhttp://dx.doi.org/10.1080/13658810903107464
 
ISI Accession Number IDWOS:000276747400001
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorLi, X
 
dc.contributor.authorZhang, X
 
dc.contributor.authorYeh, A
 
dc.contributor.authorLiu, X
 
dc.date.accessioned2010-10-31T13:36:20Z
 
dc.date.available2010-10-31T13:36:20Z
 
dc.date.issued2010
 
dc.description.abstractCellular automata (CA), which are a kind of bottom-up approaches, can be used to simulate urban dynamics and land use changes effectively. Urban simulation usually involves a large set of GIS data in terms of the extent of the study area and the number of spatial factors. The computation capability becomes a bottleneck of implementing CA for simulating large regions. Parallel computing techniques can be applied to CA for solving this kind of hard computation problem. This paper demonstrates that the performance of large-scale urban simulation can be significantly improved by using parallel computation techniques. The proposed urban CA is implemented in a parallel framework that runs on a cluster of PCs. A large region usually consists of heterogeneous or polarized development patterns. This study proposes a line-scanning method of load balance to reduce waiting time between parallel processors. This proposed method has been tested in a fast-growing region, the Pearl River Delta. The experiments indicate that parallel computation techniques with load balance can significantly improve the applicability of CA for simulating the urban development in this large complex region. © 2010 Taylor & Francis.
 
dc.description.naturelink_to_subscribed_fulltext
 
dc.identifier.citationInternational Journal Of Geographical Information Science, 2010, v. 24 n. 6, p. 803-820 [How to Cite?]
DOI: http://dx.doi.org/10.1080/13658810903107464
 
dc.identifier.citeulike10445698
 
dc.identifier.doihttp://dx.doi.org/10.1080/13658810903107464
 
dc.identifier.eissn1362-3087
 
dc.identifier.epage820
 
dc.identifier.hkuros182891
 
dc.identifier.isiWOS:000276747400001
 
dc.identifier.issn1365-8816
2013 Impact Factor: 1.479
 
dc.identifier.issue6
 
dc.identifier.openurl
 
dc.identifier.scopuseid_2-s2.0-77951196905
 
dc.identifier.spage803
 
dc.identifier.urihttp://hdl.handle.net/10722/127624
 
dc.identifier.volume24
 
dc.languageeng
 
dc.publisherTaylor & Francis Ltd. The Journal's web site is located at http://www.tandf.co.uk/journals/titles/13658816.asp
 
dc.publisher.placeUnited Kingdom
 
dc.relation.ispartofInternational Journal of Geographical Information Science
 
dc.relation.referencesReferences in Scopus
 
dc.subjectCellular automata
 
dc.subjectGIS
 
dc.subjectLoad-balancing
 
dc.subjectParallel computing
 
dc.subjectUrban simulation
 
dc.titleParallel cellular automata for large-scale urban simulation using load-balancing techniques
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Li, X</contributor.author>
<contributor.author>Zhang, X</contributor.author>
<contributor.author>Yeh, A</contributor.author>
<contributor.author>Liu, X</contributor.author>
<date.accessioned>2010-10-31T13:36:20Z</date.accessioned>
<date.available>2010-10-31T13:36:20Z</date.available>
<date.issued>2010</date.issued>
<identifier.citation>International Journal Of Geographical Information Science, 2010, v. 24 n. 6, p. 803-820</identifier.citation>
<identifier.issn>1365-8816</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/127624</identifier.uri>
<description.abstract>Cellular automata (CA), which are a kind of bottom-up approaches, can be used to simulate urban dynamics and land use changes effectively. Urban simulation usually involves a large set of GIS data in terms of the extent of the study area and the number of spatial factors. The computation capability becomes a bottleneck of implementing CA for simulating large regions. Parallel computing techniques can be applied to CA for solving this kind of hard computation problem. This paper demonstrates that the performance of large-scale urban simulation can be significantly improved by using parallel computation techniques. The proposed urban CA is implemented in a parallel framework that runs on a cluster of PCs. A large region usually consists of heterogeneous or polarized development patterns. This study proposes a line-scanning method of load balance to reduce waiting time between parallel processors. This proposed method has been tested in a fast-growing region, the Pearl River Delta. The experiments indicate that parallel computation techniques with load balance can significantly improve the applicability of CA for simulating the urban development in this large complex region. &#169; 2010 Taylor &amp; Francis.</description.abstract>
<language>eng</language>
<publisher>Taylor &amp; Francis Ltd. The Journal&apos;s web site is located at http://www.tandf.co.uk/journals/titles/13658816.asp</publisher>
<relation.ispartof>International Journal of Geographical Information Science</relation.ispartof>
<subject>Cellular automata</subject>
<subject>GIS</subject>
<subject>Load-balancing</subject>
<subject>Parallel computing</subject>
<subject>Urban simulation</subject>
<title>Parallel cellular automata for large-scale urban simulation using load-balancing techniques</title>
<type>Article</type>
<identifier.openurl>http://library.hku.hk:4550/resserv?sid=HKU:IR&amp;issn=1365-8816&amp;volume=24&amp;issue=6&amp;spage=803&amp;epage=820&amp;date=2010&amp;atitle=Parallel+Cellular+Automata+for+Large-scale+Urban+Simulation+Using+Load-balancing+Techniques</identifier.openurl>
<description.nature>link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1080/13658810903107464</identifier.doi>
<identifier.scopus>eid_2-s2.0-77951196905</identifier.scopus>
<identifier.hkuros>182891</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-77951196905&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>24</identifier.volume>
<identifier.issue>6</identifier.issue>
<identifier.spage>803</identifier.spage>
<identifier.epage>820</identifier.epage>
<identifier.eissn>1362-3087</identifier.eissn>
<identifier.isi>WOS:000276747400001</identifier.isi>
<publisher.place>United Kingdom</publisher.place>
<identifier.citeulike>10445698</identifier.citeulike>
</item>
Author Affiliations
  1. The University of Hong Kong
  2. Sun Yat-Sen University