File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: A vector fast multipole algorithm for low frequency problems

TitleA vector fast multipole algorithm for low frequency problems
Authors
KeywordsAddition theorem
Dyadic green's functions
Fast multipole algorithm
Large-scale problem
Low frequency
Issue Date2010
PublisherIEEE.
Citation
The URSI International Symposium on Electromagnetic Theory (EMTS 2010), Berlin, Germany, 16-19 August 2010. In Proceedings of the URSI International Symposium on Electromagnetic Theory, 2010, p. 620-623 How to Cite?
AbstractInstead of the traditional factorization of the scalar Green's function by using scalar addition theorem in the lowfrequency fast multipole algorithm (LF-FMA), we adopt the vector addition theorem (VAT) for the factorization of the dyadic Green's function to realize memory savings for large scale problems. We validate this factorization and use it to develop a low-frequency vector fast multipole algorithm (LF-VFMA) for low-frequency problems. © 2010 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/126207
ISBN
References

 

DC FieldValueLanguage
dc.contributor.authorLiu, YGen_HK
dc.contributor.authorChew, WCen_HK
dc.date.accessioned2010-10-31T12:15:36Z-
dc.date.available2010-10-31T12:15:36Z-
dc.date.issued2010en_HK
dc.identifier.citationThe URSI International Symposium on Electromagnetic Theory (EMTS 2010), Berlin, Germany, 16-19 August 2010. In Proceedings of the URSI International Symposium on Electromagnetic Theory, 2010, p. 620-623en_HK
dc.identifier.isbn9781424451531-
dc.identifier.urihttp://hdl.handle.net/10722/126207-
dc.description.abstractInstead of the traditional factorization of the scalar Green's function by using scalar addition theorem in the lowfrequency fast multipole algorithm (LF-FMA), we adopt the vector addition theorem (VAT) for the factorization of the dyadic Green's function to realize memory savings for large scale problems. We validate this factorization and use it to develop a low-frequency vector fast multipole algorithm (LF-VFMA) for low-frequency problems. © 2010 IEEE.en_HK
dc.languageengen_HK
dc.publisherIEEE.-
dc.relation.ispartofSymposium Digest - 20th URSI International Symposium on Electromagnetic Theory, EMTS 2010en_HK
dc.rightsURSI International Symposium on Electromagnetic Theory Proceedings. Copyright © IEEE.-
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rights©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.-
dc.subjectAddition theorem-
dc.subjectDyadic green's functions-
dc.subjectFast multipole algorithm-
dc.subjectLarge-scale problem-
dc.subjectLow frequency-
dc.titleA vector fast multipole algorithm for low frequency problemsen_HK
dc.typeConference_Paperen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=9781424451531&volume=&spage=620&epage=623&date=2010&atitle=A+vector+fast+multipole+algorithm+for+low+frequency+problems-
dc.identifier.emailChew, WC: wcchew@hku.hken_HK
dc.identifier.authorityChew, WC=rp00656en_HK
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1109/URSI-EMTS.2010.5637201en_HK
dc.identifier.scopuseid_2-s2.0-78650362327en_HK
dc.identifier.hkuros176322en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-78650362327&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.spage620en_HK
dc.identifier.epage623en_HK
dc.description.otherThe URSI International Symposium on Electromagnetic Theory (EMTS 2010), Berlin, Germany, 16-19 August 2010. In Proceedings of the URSI International Symposium on Electromagnetic Theory, 2010, p. 620-623-
dc.identifier.scopusauthoridLiu, YG=36600546900en_HK
dc.identifier.scopusauthoridChew, WC=36014436300en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats