File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/ICDM.2009.90
- Scopus: eid_2-s2.0-77951200347
- WOS: WOS:000287216600114
- Find via
Supplementary
- Citations:
- Appears in Collections:
Conference Paper: Naive bayes classification of uncertain data
Title | Naive bayes classification of uncertain data |
---|---|
Authors | |
Keywords | Naive bayes model Uncertain data mining |
Issue Date | 2009 |
Publisher | IEEE, Computer Society. |
Citation | The 9th IEEE International Conference on Data Mining (ICDM), Miami, FL., 6-9 December 2009. In Proceedings of the 9th ICDM, 2009, p. 944-949 How to Cite? |
Abstract | Traditional machine learning algorithms assume that data are exact or precise. However, this assumption may not hold in some situations because of data uncertainty arising from measurement errors, data staleness, and repeated measurements, etc. With uncertainty, the value of each data item is represented by a probability distribution function (pdf). In this paper, we propose a novel naive Bayes classification algorithm for uncertain data with a pdf. Our key solution is to extend the class conditional probability estimation in the Bayes model to handle pdf's. Extensive experiments on UCI datasets show that the accuracy of naive Bayes model can be improved by taking into account the uncertainty information. © 2009 IEEE. |
Persistent Identifier | http://hdl.handle.net/10722/125691 |
ISSN | 2020 SCImago Journal Rankings: 0.545 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ren, J | en_HK |
dc.contributor.author | Lee, SD | en_HK |
dc.contributor.author | Chen, X | en_HK |
dc.contributor.author | Kao, B | en_HK |
dc.contributor.author | Cheng, R | en_HK |
dc.contributor.author | Cheung, D | en_HK |
dc.date.accessioned | 2010-10-31T11:46:19Z | - |
dc.date.available | 2010-10-31T11:46:19Z | - |
dc.date.issued | 2009 | en_HK |
dc.identifier.citation | The 9th IEEE International Conference on Data Mining (ICDM), Miami, FL., 6-9 December 2009. In Proceedings of the 9th ICDM, 2009, p. 944-949 | en_HK |
dc.identifier.issn | 1550-4786 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/125691 | - |
dc.description.abstract | Traditional machine learning algorithms assume that data are exact or precise. However, this assumption may not hold in some situations because of data uncertainty arising from measurement errors, data staleness, and repeated measurements, etc. With uncertainty, the value of each data item is represented by a probability distribution function (pdf). In this paper, we propose a novel naive Bayes classification algorithm for uncertain data with a pdf. Our key solution is to extend the class conditional probability estimation in the Bayes model to handle pdf's. Extensive experiments on UCI datasets show that the accuracy of naive Bayes model can be improved by taking into account the uncertainty information. © 2009 IEEE. | en_HK |
dc.language | eng | en_HK |
dc.publisher | IEEE, Computer Society. | - |
dc.relation.ispartof | Proceedings of the IEEE International Conference on Data Mining, ICDM 2009 | en_HK |
dc.rights | ©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. | - |
dc.subject | Naive bayes model | en_HK |
dc.subject | Uncertain data mining | en_HK |
dc.title | Naive bayes classification of uncertain data | en_HK |
dc.type | Conference_Paper | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1550-4786&volume=&spage=944&epage=949&date=2009&atitle=Naive+bayes+classification+of+uncertain+data | - |
dc.identifier.email | Kao, B:kao@cs.hku.hk | en_HK |
dc.identifier.email | Cheng, R:ckcheng@cs.hku.hk | en_HK |
dc.identifier.email | Cheung, D:dcheung@cs.hku.hk | en_HK |
dc.identifier.authority | Kao, B=rp00123 | en_HK |
dc.identifier.authority | Cheng, R=rp00074 | en_HK |
dc.identifier.authority | Cheung, D=rp00101 | en_HK |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1109/ICDM.2009.90 | en_HK |
dc.identifier.scopus | eid_2-s2.0-77951200347 | en_HK |
dc.identifier.hkuros | 171742 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-77951200347&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.spage | 944 | en_HK |
dc.identifier.epage | 949 | en_HK |
dc.identifier.isi | WOS:000287216600114 | - |
dc.description.other | The 9th IEEE International Conference on Data Mining (ICDM), Miami, FL., 6-9 December 2009. In Proceedings of the 9th ICDM, 2009, p. 944-949 | - |
dc.identifier.scopusauthorid | Ren, J=7403083639 | en_HK |
dc.identifier.scopusauthorid | Lee, SD=7601400741 | en_HK |
dc.identifier.scopusauthorid | Chen, X=35811839300 | en_HK |
dc.identifier.scopusauthorid | Kao, B=35221592600 | en_HK |
dc.identifier.scopusauthorid | Cheng, R=7201955416 | en_HK |
dc.identifier.scopusauthorid | Cheung, D=34567902600 | en_HK |
dc.identifier.issnl | 1550-4786 | - |