File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Spectral properties of sums of certain Kronecker products

TitleSpectral properties of sums of certain Kronecker products
Authors
KeywordsEigenvalue
Eigenvector
Kronecker product
Spectral abscissa
Spectral radius
Spectrum
Issue Date2009
PublisherElsevier Inc. The Journal's web site is located at http://www.elsevier.com/locate/laa
Citation
Linear Algebra And Its Applications, 2009, v. 431 n. 9, p. 1691-1701 How to Cite?
AbstractWe introduce two kinds of sums of Kronecker products, and their induced operators. We study the algebraic properties of these two kinds of matrices and their associated operators; the properties include their eigenvalues, their eigenvectors, and the relationships between their spectral radii or spectral abscissae. Furthermore, two projected matrices of these Kronecker products and their induced operators are also studied. © 2009 Elsevier Inc. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/124869
ISSN
2023 Impact Factor: 1.0
2023 SCImago Journal Rankings: 0.837
ISI Accession Number ID
Funding AgencyGrant Number
RGCHKU 7031/06P
National Natural Science Foundation of China10871051
Shanghai Municipal Science and Technology Committee08511501703
Shanghai Municipal Education Committee (Dawn Project)
Funding Information:

The authors would like to thank Professor Chi-Kwong Li and the anonymous reviewers for their helpful and detailed comments on the manuscript. J. Lam acknowledges the financial support by RGC Grant HKU 7031/06P and Y. Wei acknowledges the financial support by the National Natural Science Foundation of China under grant 10871051, Shanghai Municipal Science and Technology Committee under grant 08511501703, and Shanghai Municipal Education Committee (Dawn Project).

References
Grants

 

DC FieldValueLanguage
dc.contributor.authorFeng, Jeen_HK
dc.contributor.authorLam, Jen_HK
dc.contributor.authorWei, Yen_HK
dc.date.accessioned2010-10-31T10:58:40Z-
dc.date.available2010-10-31T10:58:40Z-
dc.date.issued2009en_HK
dc.identifier.citationLinear Algebra And Its Applications, 2009, v. 431 n. 9, p. 1691-1701en_HK
dc.identifier.issn0024-3795en_HK
dc.identifier.urihttp://hdl.handle.net/10722/124869-
dc.description.abstractWe introduce two kinds of sums of Kronecker products, and their induced operators. We study the algebraic properties of these two kinds of matrices and their associated operators; the properties include their eigenvalues, their eigenvectors, and the relationships between their spectral radii or spectral abscissae. Furthermore, two projected matrices of these Kronecker products and their induced operators are also studied. © 2009 Elsevier Inc. All rights reserved.en_HK
dc.languageengen_HK
dc.publisherElsevier Inc. The Journal's web site is located at http://www.elsevier.com/locate/laaen_HK
dc.relation.ispartofLinear Algebra and Its Applicationsen_HK
dc.subjectEigenvalueen_HK
dc.subjectEigenvectoren_HK
dc.subjectKronecker producten_HK
dc.subjectSpectral abscissaen_HK
dc.subjectSpectral radiusen_HK
dc.subjectSpectrumen_HK
dc.titleSpectral properties of sums of certain Kronecker productsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0024-3795&volume=431&issue=9&spage=1691&epage=1701&date=2009&atitle=Spectral+properties+of+sums+of+certain+kronecker+productsen_HK
dc.identifier.emailLam, J:james.lam@hku.hken_HK
dc.identifier.authorityLam, J=rp00133en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.laa.2009.06.004en_HK
dc.identifier.scopuseid_2-s2.0-68349148334en_HK
dc.identifier.hkuros179602en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-68349148334&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume431en_HK
dc.identifier.issue9en_HK
dc.identifier.spage1691en_HK
dc.identifier.epage1701en_HK
dc.identifier.isiWOS:000269768900026-
dc.publisher.placeUnited Statesen_HK
dc.relation.projectDecay rate estimation and synthesis of functional differential systems via semi-definite programming-
dc.identifier.scopusauthoridFeng, Je=35744477900en_HK
dc.identifier.scopusauthoridLam, J=7201973414en_HK
dc.identifier.scopusauthoridWei, Y=7404095047en_HK
dc.identifier.citeulike5315316-
dc.identifier.issnl0024-3795-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats