File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: New passivity criteria for neural networks with time-varying delay

TitleNew passivity criteria for neural networks with time-varying delay
Authors
Issue Date2009
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/neunet
Citation
Neural Networks, 2009, v. 22 n. 7, p. 864-868 How to Cite?
AbstractIn this paper, improved criteria for the passivity of neural networks with time delay are proposed. The improvement is achieved by exploiting the finer relationships between the time-varying delay and its size bound which allow the use of more slack variables. It is illustrated via numerical examples that the proposed results are less conservative than those available in the literature. © 2009 Elsevier Ltd. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/124831
ISSN
2015 Impact Factor: 3.216
2015 SCImago Journal Rankings: 1.629
ISI Accession Number ID
Funding AgencyGrant Number
National Natural Science Foundation of China60825303
Foundation for the Author of National Excellent Doctoral Dissertation of China2007E4
China Postdoctoral Science FoundationRGC HKU 7031/06P
Funding Information:

This work was partially supported by the National Natural Science Foundation of China (60825303), the Foundation for the Author of National Excellent Doctoral Dissertation of China (2007E4), and the China Postdoctoral Science Foundation funded project, RGC HKU 7031/06P.

References

 

DC FieldValueLanguage
dc.contributor.authorZhang, Zen_HK
dc.contributor.authorMou, Sen_HK
dc.contributor.authorLam, Jen_HK
dc.contributor.authorGao, Hen_HK
dc.date.accessioned2010-10-31T10:56:39Z-
dc.date.available2010-10-31T10:56:39Z-
dc.date.issued2009en_HK
dc.identifier.citationNeural Networks, 2009, v. 22 n. 7, p. 864-868en_HK
dc.identifier.issn0893-6080en_HK
dc.identifier.urihttp://hdl.handle.net/10722/124831-
dc.description.abstractIn this paper, improved criteria for the passivity of neural networks with time delay are proposed. The improvement is achieved by exploiting the finer relationships between the time-varying delay and its size bound which allow the use of more slack variables. It is illustrated via numerical examples that the proposed results are less conservative than those available in the literature. © 2009 Elsevier Ltd. All rights reserved.en_HK
dc.languageengen_HK
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/neuneten_HK
dc.relation.ispartofNeural Networksen_HK
dc.subject.meshAlgorithmsen_HK
dc.subject.meshComputer Simulationen_HK
dc.subject.meshHumansen_HK
dc.subject.meshModels, Neurologicalen_HK
dc.subject.meshNerve Net - physiologyen_HK
dc.subject.meshNeural Networks (Computer)en_HK
dc.subject.meshNonlinear Dynamicsen_HK
dc.subject.meshTime Factorsen_HK
dc.subject.meshUncertaintyen_HK
dc.titleNew passivity criteria for neural networks with time-varying delayen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0893-6080&volume=22&issue=7&spage=864&epage=868&date=2009&atitle=New+passivity+criteria+for+neural+networks+with+time-varying+delayen_HK
dc.identifier.emailLam, J:james.lam@hku.hken_HK
dc.identifier.authorityLam, J=rp00133en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.neunet.2009.05.012en_HK
dc.identifier.pmid19595564-
dc.identifier.scopuseid_2-s2.0-69449095121en_HK
dc.identifier.hkuros179601en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-69449095121&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume22en_HK
dc.identifier.issue7en_HK
dc.identifier.spage864en_HK
dc.identifier.epage868en_HK
dc.identifier.isiWOS:000270524500002-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridZhang, Z=12752963300en_HK
dc.identifier.scopusauthoridMou, S=16177795900en_HK
dc.identifier.scopusauthoridLam, J=7201973414en_HK
dc.identifier.scopusauthoridGao, H=7402971422en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats