File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s00180-010-0190-8
- Scopus: eid_2-s2.0-77954534665
- WOS: WOS:000280074100009
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Binary geometric process model for the modeling of longitudinal binary data with trend
Title | Binary geometric process model for the modeling of longitudinal binary data with trend |
---|---|
Authors | |
Keywords | Geometric process Longitudinal binary data Threshold model Trend data |
Issue Date | 2010 |
Publisher | Physica-Verlag GmbH und Co. |
Citation | Computational Statistics, 2010, v. 25 n. 3, p. 505-536 How to Cite? |
Abstract | We propose the Binary Geometric Process (BGP) model for longitudinal binary data with trends. The Geometric Process (GP) model contains two components to capture the dynamics on a trend: the mean of an underlying renewal process and the ratio which measures the direction and strength of the trend. The GP model is extended to binary data using a latent GP. The statistical inference for the BGP models is conducted using the least-square, maximum likelihood (ML) and Bayesian methods. The model is demonstrated through simulation studies and real data analyzes. Results reveal that all estimators perform satisfactorily and that the ML estimator performs the best. Moreover the BGP model is better than the ordinary logistic regression model. © 2010 The Author(s). |
Persistent Identifier | http://hdl.handle.net/10722/124058 |
ISSN | 2023 Impact Factor: 1.0 2023 SCImago Journal Rankings: 0.566 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chan, JSK | en_HK |
dc.contributor.author | Leung, DYP | en_HK |
dc.date.accessioned | 2010-10-19T04:36:51Z | - |
dc.date.available | 2010-10-19T04:36:51Z | - |
dc.date.issued | 2010 | en_HK |
dc.identifier.citation | Computational Statistics, 2010, v. 25 n. 3, p. 505-536 | en_HK |
dc.identifier.issn | 0943-4062 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/124058 | - |
dc.description.abstract | We propose the Binary Geometric Process (BGP) model for longitudinal binary data with trends. The Geometric Process (GP) model contains two components to capture the dynamics on a trend: the mean of an underlying renewal process and the ratio which measures the direction and strength of the trend. The GP model is extended to binary data using a latent GP. The statistical inference for the BGP models is conducted using the least-square, maximum likelihood (ML) and Bayesian methods. The model is demonstrated through simulation studies and real data analyzes. Results reveal that all estimators perform satisfactorily and that the ML estimator performs the best. Moreover the BGP model is better than the ordinary logistic regression model. © 2010 The Author(s). | en_HK |
dc.language | eng | en_HK |
dc.publisher | Physica-Verlag GmbH und Co. | en_HK |
dc.relation.ispartof | Computational Statistics | en_HK |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.rights | The original publication is available at www.springerlink.com | en_HK |
dc.subject | Geometric process | en_HK |
dc.subject | Longitudinal binary data | en_HK |
dc.subject | Threshold model | en_HK |
dc.subject | Trend data | en_HK |
dc.title | Binary geometric process model for the modeling of longitudinal binary data with trend | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Leung, DYP: dorisl@hkucc.hku.hk | en_HK |
dc.identifier.authority | Leung, DYP=rp00465 | en_HK |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1007/s00180-010-0190-8 | en_HK |
dc.identifier.scopus | eid_2-s2.0-77954534665 | en_HK |
dc.identifier.hkuros | 173788 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-77954534665&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 25 | en_HK |
dc.identifier.issue | 3 | en_HK |
dc.identifier.spage | 505 | en_HK |
dc.identifier.epage | 536 | en_HK |
dc.identifier.eissn | 1613-9658 | en_HK |
dc.identifier.isi | WOS:000280074100009 | - |
dc.publisher.place | Germany | en_HK |
dc.description.other | Springer Open Choice, 01 Dec 2010 | - |
dc.identifier.scopusauthorid | Chan, JSK=24467617500 | en_HK |
dc.identifier.scopusauthorid | Leung, DYP=16304486500 | en_HK |
dc.identifier.citeulike | 7116130 | - |
dc.identifier.issnl | 0943-4062 | - |