File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s10519-009-9322-8
- Scopus: eid_2-s2.0-77953287026
- PMID: 20033275
- WOS: WOS:000276603900013
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Matched Ascertainment of Informative Families for Complex Genetic Modelling
Title | Matched Ascertainment of Informative Families for Complex Genetic Modelling |
---|---|
Authors | |
Keywords | Segregation analysis Mixed models Variance components Probit models |
Issue Date | 2010 |
Publisher | Springer US |
Citation | Behavior Genetics, 2010, v. 40 n. 3, p. 404-414 How to Cite? |
Abstract | Family data are used extensively in quantitative genetic studies to disentangle the genetic and environmental contributions to various diseases. Many family studies based their analysis on population-based registers containing a large number of individuals composed of small family units. For binary trait analyses, exact marginal likelihood is a common approach, but, due to the computational demand of the enormous data sets, it allows only a limited number of effects in the model. This makes it particularly difficult to perform joint estimation of variance components for a binary trait and the potential confounders. We have developed a data-reduction method of ascertaining informative families from population-based family registers. We propose a scheme where the ascertained families match the full cohort with respect to some relevant statistics, such as the risk to relatives of an affected individual. The ascertainment-adjusted analysis, which we implement using a pseudo-likelihood approach, is shown to be efficient relative to the analysis of the whole cohort and robust to mis-specification of the random effect distribution. |
Persistent Identifier | http://hdl.handle.net/10722/124038 |
ISSN | 2023 Impact Factor: 2.6 2023 SCImago Journal Rankings: 1.092 |
PubMed Central ID | |
ISI Accession Number ID | |
References | Breslow NE, Clayton D (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25 doi: 10.2307/2290687 Burton PR (2003) Correcting for nonrandom ascertainment in generalized linear mixed models (GLMMs), fitted using Gibbs sampling. Genet Epidemiol 24:24–35 doi: 10.1002/gepi.10206 Burton PR, Tiller KJ, Gurrin LC, Cookson WOCM, Musk AW, Palmer LJ (1999) Genetic variance components analysis for binary phenotypes using generalized linear mixed models (GLMMs) and Gibbs sampling. Genet Epidemiol 17:118–140 doi: 10.1002/(SICI)1098-2272(1999)17:2<118::AID-GEPI3>3.0.CO;2-V de Andrade M, Amos CI (2000) Ascertainment issues in variance component models. Geneti Epidemiol 19:333–344 doi: 10.1002/1098-2272(200012)19:4<333::AID-GEPI5>3.0.CO;2-# Epstein MP, Lin X, Boehnke M (2002) Ascertainment-adjusted parameter estimates revisited. Am J Hum Genet 70:886–895 doi: 10.1086/339517 Falconer DS (1965) The inheritance of liability to certain diseases estimated from the incidence among relatives. Ann Hum Genet 29:51–76 doi: 10.1111/j.1469-1809.1965.tb00500.x Genz A (1992) Numerical computation of multivariate normal probabilities. J Comput Graph Stat 1:141–149 doi: 10.2307/1390838 Glidden D, Liang KY (2002) Ascertainment adjustment in complex diseases. Genet Epidemiol 23:201–208 doi: 10.1002/gepi.10204 Kalbfleisch JD, Lawless JF (1988) Likelihood analysis of multistate models for disease incidence and mortality. Stat Med 7:147–160 doi: 10.1002/sim.4780070116 Lu SE, Wang MC (2002) Cohort case–control design and analysis for clustered failure-time data. Biometrics 58:764–772 doi: 10.1111/j.0006-341X.2002.00764.x Moger TA, Pawitan Y, Borgan O (2008) Case-cohort methods for survival data on families from routine registers. Stat Med 27:1062–1074 doi: 10.1002/sim.3004 Noh M, Lee Y, Pawitan Y (2005) Robust ascertainment-adjusted parameter estimation. Genet Epidemiol 29:68–75 doi: 10.1002/gepi.20078 Noh, M, Yip B, Lee Y, Pawitan Y (2006) Multicomponent variance estimation for binary traits in family-based studies. Genet Epidemiol 30:37–47 doi: 10.1002/gepi.20099 Pawitan Y, Reilly M, Nilson E, Cnattingius S, Lichtenstein P (2004) Estimation of genetic and environmental factors for binary traits using family data. Stat Med 23:449–465 doi: 10.1002/sim.1603 Svensson A, Pawitan Y, Cnattingius S, Reilly M, Lichtenstein P (2006) Familial aggregation of small-for-gestational-age births: the importance of fetal genetic effects. Am J Obstet Gynecol 194:475–9 doi: 10.1016/j.ajog.2005.08.019 Yip B, Björk C, Lichtenstein P, Hultman C, Pawitan Y (2008) Covariance components models for multivariate binary-traits in family data analysis. Stat Med 27:1086–1105 doi: 10.1002/sim.2996 Zeger SL, Karim MR (1991) Generalized linear models with random effects: a Gibbs sampling approach. J Am Stat Assoc 86:79–86 doi: 10.2307/2289717 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yip, H. Benjamin | en_HK |
dc.contributor.author | Reilly, Marie | en_HK |
dc.contributor.author | Cnattingius, Sven | en_HK |
dc.contributor.author | Pawitan, Yudi | en_HK |
dc.date.accessioned | 2010-10-19T04:35:09Z | - |
dc.date.available | 2010-10-19T04:35:09Z | - |
dc.date.issued | 2010 | en_HK |
dc.identifier.citation | Behavior Genetics, 2010, v. 40 n. 3, p. 404-414 | en |
dc.identifier.issn | 0001-8244 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/124038 | - |
dc.description.abstract | Family data are used extensively in quantitative genetic studies to disentangle the genetic and environmental contributions to various diseases. Many family studies based their analysis on population-based registers containing a large number of individuals composed of small family units. For binary trait analyses, exact marginal likelihood is a common approach, but, due to the computational demand of the enormous data sets, it allows only a limited number of effects in the model. This makes it particularly difficult to perform joint estimation of variance components for a binary trait and the potential confounders. We have developed a data-reduction method of ascertaining informative families from population-based family registers. We propose a scheme where the ascertained families match the full cohort with respect to some relevant statistics, such as the risk to relatives of an affected individual. The ascertainment-adjusted analysis, which we implement using a pseudo-likelihood approach, is shown to be efficient relative to the analysis of the whole cohort and robust to mis-specification of the random effect distribution. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Springer US | en_HK |
dc.relation.ispartof | Behavior Genetics | en_HK |
dc.subject | Segregation analysis | en_HK |
dc.subject | Mixed models | en_HK |
dc.subject | Variance components | en_HK |
dc.subject | Probit models | en_HK |
dc.title | Matched Ascertainment of Informative Families for Complex Genetic Modelling | en_HK |
dc.type | Article | en_HK |
dc.description.nature | link_to_OA_fulltext | - |
dc.identifier.doi | 10.1007/s10519-009-9322-8 | en_HK |
dc.identifier.pmid | 20033275 | - |
dc.identifier.pmcid | PMC2953624 | - |
dc.identifier.scopus | eid_2-s2.0-77953287026 | - |
dc.relation.references | Amos CI (1994) Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet 54:535–543 | en_HK |
dc.relation.references | Blangero J, Williams JT, Almasy L (2001) Variance component methods for detecting complex trait loci. In: Rao DC, Province MA (eds) Genetic dissection of complex traits. Academic Press, London, pp 151–182 | en_HK |
dc.relation.references | Breslow NE, Clayton D (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25 | en_HK |
dc.relation.references | doi: 10.2307/2290687 | en_HK |
dc.relation.references | Burton PR (2003) Correcting for nonrandom ascertainment in generalized linear mixed models (GLMMs), fitted using Gibbs sampling. Genet Epidemiol 24:24–35 | en_HK |
dc.relation.references | doi: 10.1002/gepi.10206 | en_HK |
dc.relation.references | Burton PR, Tiller KJ, Gurrin LC, Cookson WOCM, Musk AW, Palmer LJ (1999) Genetic variance components analysis for binary phenotypes using generalized linear mixed models (GLMMs) and Gibbs sampling. Genet Epidemiol 17:118–140 | en_HK |
dc.relation.references | doi: 10.1002/(SICI)1098-2272(1999)17:2<118::AID-GEPI3>3.0.CO;2-V | en_HK |
dc.relation.references | de Andrade M, Amos CI (2000) Ascertainment issues in variance component models. Geneti Epidemiol 19:333–344 | en_HK |
dc.relation.references | doi: 10.1002/1098-2272(200012)19:4<333::AID-GEPI5>3.0.CO;2-# | en_HK |
dc.relation.references | Elston RC, Sobel E (1979) Sampling considerations in the gathering and analysis of pedigree data. Am J Hum Genet 31:62–69 | en_HK |
dc.relation.references | Epstein MP, Lin X, Boehnke M (2002) Ascertainment-adjusted parameter estimates revisited. Am J Hum Genet 70:886–895 | en_HK |
dc.relation.references | doi: 10.1086/339517 | en_HK |
dc.relation.references | Falconer DS (1965) The inheritance of liability to certain diseases estimated from the incidence among relatives. Ann Hum Genet 29:51–76 | en_HK |
dc.relation.references | doi: 10.1111/j.1469-1809.1965.tb00500.x | en_HK |
dc.relation.references | Genz A (1992) Numerical computation of multivariate normal probabilities. J Comput Graph Stat 1:141–149 | en_HK |
dc.relation.references | doi: 10.2307/1390838 | en_HK |
dc.relation.references | Glidden D, Liang KY (2002) Ascertainment adjustment in complex diseases. Genet Epidemiol 23:201–208 | en_HK |
dc.relation.references | doi: 10.1002/gepi.10204 | en_HK |
dc.relation.references | Kalbfleisch JD, Lawless JF (1988) Likelihood analysis of multistate models for disease incidence and mortality. Stat Med 7:147–160 | en_HK |
dc.relation.references | doi: 10.1002/sim.4780070116 | en_HK |
dc.relation.references | Lee Y, Nelder JA (1996) Hierarchical generalized linear models (with discussion). J R Stat Soc B 58:619–678 | en_HK |
dc.relation.references | Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM (2009) Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373:234–39 | en_HK |
dc.relation.references | Lu SE, Wang MC (2002) Cohort case–control design and analysis for clustered failure-time data. Biometrics 58:764–772 | en_HK |
dc.relation.references | doi: 10.1111/j.0006-341X.2002.00764.x | en_HK |
dc.relation.references | Mather K, Jinks JL (1977) Introduction to biometrical genetics. Cornell University Press, Ithaca | en_HK |
dc.relation.references | Moger TA, Pawitan Y, Borgan O (2008) Case-cohort methods for survival data on families from routine registers. Stat Med 27:1062–1074 | en_HK |
dc.relation.references | doi: 10.1002/sim.3004 | en_HK |
dc.relation.references | Neale MC, Cardon LR (1992) Methodology for genetic studies of twins and families. Kluwer Academic, Dordrecht | en_HK |
dc.relation.references | Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313 | en_HK |
dc.relation.references | Noh M, Lee Y, Pawitan Y (2005) Robust ascertainment-adjusted parameter estimation. Genet Epidemiol 29:68–75 | en_HK |
dc.relation.references | doi: 10.1002/gepi.20078 | en_HK |
dc.relation.references | Noh, M, Yip B, Lee Y, Pawitan Y (2006) Multicomponent variance estimation for binary traits in family-based studies. Genet Epidemiol 30:37–47 | en_HK |
dc.relation.references | doi: 10.1002/gepi.20099 | en_HK |
dc.relation.references | Pawitan Y, Reilly M, Nilson E, Cnattingius S, Lichtenstein P (2004) Estimation of genetic and environmental factors for binary traits using family data. Stat Med 23:449–465 | en_HK |
dc.relation.references | doi: 10.1002/sim.1603 | en_HK |
dc.relation.references | Reilly M (1996) Optimal sampling strategies for two-stage Studies. Am J Epidemiol 143:92–100 | en_HK |
dc.relation.references | Sham PC (1998) Statistics in human genetics. Arnold, London | en_HK |
dc.relation.references | Svensson A, Pawitan Y, Cnattingius S, Reilly M, Lichtenstein P (2006) Familial aggregation of small-for-gestational-age births: the importance of fetal genetic effects. Am J Obstet Gynecol 194:475–9 | en_HK |
dc.relation.references | doi: 10.1016/j.ajog.2005.08.019 | en_HK |
dc.relation.references | Yip B, Björk C, Lichtenstein P, Hultman C, Pawitan Y (2008) Covariance components models for multivariate binary-traits in family data analysis. Stat Med 27:1086–1105 | en_HK |
dc.relation.references | doi: 10.1002/sim.2996 | en_HK |
dc.relation.references | Zeger SL, Karim MR (1991) Generalized linear models with random effects: a Gibbs sampling approach. J Am Stat Assoc 86:79–86 | en_HK |
dc.relation.references | doi: 10.2307/2289717 | en_HK |
dc.identifier.volume | 40 | en_HK |
dc.identifier.issue | 3 | en_HK |
dc.identifier.spage | 404 | en_HK |
dc.identifier.epage | 414 | en_HK |
dc.identifier.eissn | 1573-3297 | en_HK |
dc.identifier.isi | WOS:000276603900013 | - |
dc.description.other | Springer Open Choice, 01 Dec 2010 | - |
dc.identifier.citeulike | 6477994 | - |
dc.identifier.issnl | 0001-8244 | - |