File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Three-dimensional vibration analysis of prisms with isosceles triangular cross-section
  • Basic View
  • Metadata View
  • XML View
TitleThree-dimensional vibration analysis of prisms with isosceles triangular cross-section
 
AuthorsZhou, D1
Cheung, YK2
Lo, SH2
Au, FTK2
 
KeywordsElasticity solution
Prism
Ritz method
Three-dimensional vibration
Triangular cross-section
 
Issue Date2010
 
PublisherSpringer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00419/index.htm
 
CitationArchive Of Applied Mechanics, 2010, v. 80 n. 6, p. 699-710 [How to Cite?]
DOI: http://dx.doi.org/10.1007/s00419-009-0337-7
 
AbstractThis paper studies the three-dimensional (3-D) free vibration of uniform prisms with isosceles triangular cross-section, based on the exact, linear and small strain elasticity theory. The actual triangular prismatic domain is first mapped onto a basic cubic domain. Then the Ritz method is applied to derive the eigenfrequency equation from the energy functional of the prism. A set of triplicate Chebyshev polynomial series, multiplied by a boundary function chosen to, a priori, satisfy the geometric boundary conditions of the prism is developed as the admissible functions of each displacement component. The convergence and comparison study demonstrates the high accuracy and numerical robustness of the present method. The effect of length-thickness ratio and apex angle on eigenfrequencies of the prisms is studied in detail and the results are compared with those obtained from the classical one-dimensional theory and the 3-D finite element method. Sets of valuable data known for the first time are reported, which can serve as benchmark values in applying various approximate beam and rod theories. © 2009 Springer-Verlag.
 
ISSN0939-1533
2013 Impact Factor: 1.438
 
DOIhttp://dx.doi.org/10.1007/s00419-009-0337-7
 
ISI Accession Number IDWOS:000276489400009
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorZhou, D
 
dc.contributor.authorCheung, YK
 
dc.contributor.authorLo, SH
 
dc.contributor.authorAu, FTK
 
dc.date.accessioned2010-10-19T04:32:44Z
 
dc.date.available2010-10-19T04:32:44Z
 
dc.date.issued2010
 
dc.description.abstractThis paper studies the three-dimensional (3-D) free vibration of uniform prisms with isosceles triangular cross-section, based on the exact, linear and small strain elasticity theory. The actual triangular prismatic domain is first mapped onto a basic cubic domain. Then the Ritz method is applied to derive the eigenfrequency equation from the energy functional of the prism. A set of triplicate Chebyshev polynomial series, multiplied by a boundary function chosen to, a priori, satisfy the geometric boundary conditions of the prism is developed as the admissible functions of each displacement component. The convergence and comparison study demonstrates the high accuracy and numerical robustness of the present method. The effect of length-thickness ratio and apex angle on eigenfrequencies of the prisms is studied in detail and the results are compared with those obtained from the classical one-dimensional theory and the 3-D finite element method. Sets of valuable data known for the first time are reported, which can serve as benchmark values in applying various approximate beam and rod theories. © 2009 Springer-Verlag.
 
dc.description.naturepublished_or_final_version
 
dc.description.otherSpringer Open Choice, 01 Dec 2010
 
dc.identifier.citationArchive Of Applied Mechanics, 2010, v. 80 n. 6, p. 699-710 [How to Cite?]
DOI: http://dx.doi.org/10.1007/s00419-009-0337-7
 
dc.identifier.citeulike4935435
 
dc.identifier.doihttp://dx.doi.org/10.1007/s00419-009-0337-7
 
dc.identifier.epage710
 
dc.identifier.hkuros175835
 
dc.identifier.hkuros195765
 
dc.identifier.isiWOS:000276489400009
 
dc.identifier.issn0939-1533
2013 Impact Factor: 1.438
 
dc.identifier.issue6
 
dc.identifier.openurl
 
dc.identifier.scopuseid_2-s2.0-77952011371
 
dc.identifier.spage699
 
dc.identifier.urihttp://hdl.handle.net/10722/124008
 
dc.identifier.volume80
 
dc.languageeng
 
dc.publisherSpringer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00419/index.htm
 
dc.publisher.placeGermany
 
dc.relation.ispartofArchive of Applied Mechanics
 
dc.relation.referencesReferences in Scopus
 
dc.rightsThe original publication is available at www.springerlink.com
 
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License
 
dc.subjectElasticity solution
 
dc.subjectPrism
 
dc.subjectRitz method
 
dc.subjectThree-dimensional vibration
 
dc.subjectTriangular cross-section
 
dc.titleThree-dimensional vibration analysis of prisms with isosceles triangular cross-section
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Zhou, D</contributor.author>
<contributor.author>Cheung, YK</contributor.author>
<contributor.author>Lo, SH</contributor.author>
<contributor.author>Au, FTK</contributor.author>
<date.accessioned>2010-10-19T04:32:44Z</date.accessioned>
<date.available>2010-10-19T04:32:44Z</date.available>
<date.issued>2010</date.issued>
<identifier.citation>Archive Of Applied Mechanics, 2010, v. 80 n. 6, p. 699-710</identifier.citation>
<identifier.issn>0939-1533</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/124008</identifier.uri>
<description.abstract>This paper studies the three-dimensional (3-D) free vibration of uniform prisms with isosceles triangular cross-section, based on the exact, linear and small strain elasticity theory. The actual triangular prismatic domain is first mapped onto a basic cubic domain. Then the Ritz method is applied to derive the eigenfrequency equation from the energy functional of the prism. A set of triplicate Chebyshev polynomial series, multiplied by a boundary function chosen to, a priori, satisfy the geometric boundary conditions of the prism is developed as the admissible functions of each displacement component. The convergence and comparison study demonstrates the high accuracy and numerical robustness of the present method. The effect of length-thickness ratio and apex angle on eigenfrequencies of the prisms is studied in detail and the results are compared with those obtained from the classical one-dimensional theory and the 3-D finite element method. Sets of valuable data known for the first time are reported, which can serve as benchmark values in applying various approximate beam and rod theories. &#169; 2009 Springer-Verlag.</description.abstract>
<language>eng</language>
<publisher>Springer Verlag. The Journal&apos;s web site is located at http://link.springer.de/link/service/journals/00419/index.htm</publisher>
<relation.ispartof>Archive of Applied Mechanics</relation.ispartof>
<rights>The original publication is available at www.springerlink.com</rights>
<rights>Creative Commons: Attribution 3.0 Hong Kong License</rights>
<subject>Elasticity solution</subject>
<subject>Prism</subject>
<subject>Ritz method</subject>
<subject>Three-dimensional vibration</subject>
<subject>Triangular cross-section</subject>
<title>Three-dimensional vibration analysis of prisms with isosceles triangular cross-section</title>
<type>Article</type>
<identifier.openurl>http://library.hku.hk:4550/resserv?sid=HKU:IR&amp;issn=0939-1533&amp;volume=80&amp;issue=6&amp;spage=699&amp;epage=710&amp;date=2010&amp;atitle=Three-dimensional+vibration+analysis+of+prisms+with+isosceles+triangular+cross-section</identifier.openurl>
<description.nature>published_or_final_version</description.nature>
<identifier.doi>10.1007/s00419-009-0337-7</identifier.doi>
<identifier.scopus>eid_2-s2.0-77952011371</identifier.scopus>
<identifier.hkuros>175835</identifier.hkuros>
<identifier.hkuros>195765</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-77952011371&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>80</identifier.volume>
<identifier.issue>6</identifier.issue>
<identifier.spage>699</identifier.spage>
<identifier.epage>710</identifier.epage>
<identifier.isi>WOS:000276489400009</identifier.isi>
<publisher.place>Germany</publisher.place>
<description.other>Springer Open Choice, 01 Dec 2010</description.other>
<identifier.citeulike>4935435</identifier.citeulike>
<bitstream.url>http://hub.hku.hk/bitstream/10722/124008/1/ft.pdf</bitstream.url>
</item>
Author Affiliations
  1. Nanjing University of Technology
  2. The University of Hong Kong