File Download
Supplementary
-
Citations:
- Appears in Collections:
Conference Paper: Visual control of steering toward a goal uses heading but not path information
Title | Visual control of steering toward a goal uses heading but not path information |
---|---|
Authors | |
Issue Date | 2008 |
Publisher | Association for Research in Vision and Ophthalmology. The Journal's web site is located at http://wwwjournalofvisionorg/ |
Citation | The 2008 Annual Meeting of the Vision Sciences Society (VSS 2008), Naples, FL., 9-14 May 2008. In Journal of Vision, 2008, v. 8 n. 6, p. 1162 How to Cite? |
Abstract | Instantaneous direction of self-translation (heading) and trajectory (path) are two central features for the control of locomotion. We have shown that humans can perceive heading in the absence of path information (Li, Sweet, & Stone, JOV 2006). Here we investigate whether humans use a heading- or path-based control strategy when steering a vehicle toward a goal. We simulated locomotion over a ground plane at 2 m/s with observers' line of sight fixed with respect to the vehicle and randomly offset by ±8° to render screen-centering strategies useless. Observers used a joystick to change the curvature of the vehicle's traveling path to steer toward an environmental target under two display conditions (sparse flow: the ground was composed of random dots; dense-flow: the ground was textured). In the dense-flow condition, we examined both open- and closed-loop performance (open-loop: the target disappeared as observers initiated steering; closed-loop: the target was visible throughout the trial) while in the sparse condition, we only examined the former. For 7 observers (5 naïve), in all conditions, the maximum path curvature was several times larger than that expected if observers used a path-based strategy to point their expected path at the target and then hold curvature constant (mean curvature ratio±SE: 15.1±4.7, 9.1±1.7, & 17.3±8.2, for sparse open-loop, dense open-loop and closed-loop, respectively). Instead, observers over-steered initially and then let path curvature decrease toward zero over time with the final heading error larger for sparse-flow than for either open- or closed-loop dense-flow (mean±SE: 5.0±1.1°, 1.2±0.3°, & 1.7±0.4°, respectively). This behavior is consistent with observers steering their heading (estimated from optic flow) towards the goal. The fact that final heading error is indistinguishable in the open- and closed-loop conditions argues against a Tau-equalization strategy. Humans rely primarily on heading when steering toward a goal and not on estimated future path or time-to-contact information. |
Persistent Identifier | http://hdl.handle.net/10722/110054 |
ISSN | 2023 Impact Factor: 2.0 2023 SCImago Journal Rankings: 0.849 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, L | en_HK |
dc.contributor.author | Stone, L | en_HK |
dc.contributor.author | Chan, EKS | en_HK |
dc.date.accessioned | 2010-09-26T01:49:11Z | - |
dc.date.available | 2010-09-26T01:49:11Z | - |
dc.date.issued | 2008 | en_HK |
dc.identifier.citation | The 2008 Annual Meeting of the Vision Sciences Society (VSS 2008), Naples, FL., 9-14 May 2008. In Journal of Vision, 2008, v. 8 n. 6, p. 1162 | en_HK |
dc.identifier.issn | 1534-7362 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/110054 | - |
dc.description.abstract | Instantaneous direction of self-translation (heading) and trajectory (path) are two central features for the control of locomotion. We have shown that humans can perceive heading in the absence of path information (Li, Sweet, & Stone, JOV 2006). Here we investigate whether humans use a heading- or path-based control strategy when steering a vehicle toward a goal. We simulated locomotion over a ground plane at 2 m/s with observers' line of sight fixed with respect to the vehicle and randomly offset by ±8° to render screen-centering strategies useless. Observers used a joystick to change the curvature of the vehicle's traveling path to steer toward an environmental target under two display conditions (sparse flow: the ground was composed of random dots; dense-flow: the ground was textured). In the dense-flow condition, we examined both open- and closed-loop performance (open-loop: the target disappeared as observers initiated steering; closed-loop: the target was visible throughout the trial) while in the sparse condition, we only examined the former. For 7 observers (5 naïve), in all conditions, the maximum path curvature was several times larger than that expected if observers used a path-based strategy to point their expected path at the target and then hold curvature constant (mean curvature ratio±SE: 15.1±4.7, 9.1±1.7, & 17.3±8.2, for sparse open-loop, dense open-loop and closed-loop, respectively). Instead, observers over-steered initially and then let path curvature decrease toward zero over time with the final heading error larger for sparse-flow than for either open- or closed-loop dense-flow (mean±SE: 5.0±1.1°, 1.2±0.3°, & 1.7±0.4°, respectively). This behavior is consistent with observers steering their heading (estimated from optic flow) towards the goal. The fact that final heading error is indistinguishable in the open- and closed-loop conditions argues against a Tau-equalization strategy. Humans rely primarily on heading when steering toward a goal and not on estimated future path or time-to-contact information. | - |
dc.language | eng | en_HK |
dc.publisher | Association for Research in Vision and Ophthalmology. The Journal's web site is located at http://wwwjournalofvisionorg/ | en_HK |
dc.relation.ispartof | Journal of Vision | en_HK |
dc.title | Visual control of steering toward a goal uses heading but not path information | en_HK |
dc.type | Conference_Paper | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1534-7362&volume=8&issue=6&spage=1162&epage=&date=2008&atitle=Visual+Control+Of+Steering+Toward+A+Goal+Uses+Heading+But+Not+Path+Information | en_HK |
dc.identifier.email | Li, L: lili8816@gmail.com | en_HK |
dc.identifier.email | Chan, EKS: erich_chan@hotmail.com | en_HK |
dc.identifier.authority | Li, L=rp00636 | en_HK |
dc.description.nature | link_to_OA_fulltext | - |
dc.identifier.doi | 10.1167/8.6.1162 | - |
dc.identifier.hkuros | 143195 | en_HK |
dc.identifier.volume | 8 | en_HK |
dc.identifier.issue | 6 | en_HK |
dc.identifier.spage | 1162 | en_HK |
dc.identifier.epage | 1162 | - |
dc.identifier.issnl | 1534-7362 | - |