File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: Time-resolved spectroscopic studies of photo-defluorination and photo-decarboxylation reactions of selected fluoroquinolone antibiotic and nonsteroidal anti-inflammatory drugs

TitleTime-resolved spectroscopic studies of photo-defluorination and photo-decarboxylation reactions of selected fluoroquinolone antibiotic and nonsteroidal anti-inflammatory drugs
Authors
Advisors
Advisor(s):Phillips, DL
Issue Date2013
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Su, T. [苏涛]. (2013). Time-resolved spectroscopic studies of photo-defluorination and photo-decarboxylation reactions of selected fluoroquinolone antibiotic and nonsteroidal anti-inflammatory drugs. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5153705
AbstractThis thesis aimed to investigate the features and properties of the ground states, transient species and photoproducts involved in the photophysical and photochemical processes for four kinds of drug compounds: lomefloxacin (LF), norfloxacin (NF), tiaprofenic acid (TPA), and flurbiprofen (Fp). The investigation used femtosecond transient absorption (fs-TA), nanosecond transient absorption (ns-TA), UV/Vis absorption spectra (UV/Vis), nanosecond transient resonance Raman (ns-TR2) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR3), as well as density functional theory (DFT) calculations. Although many previous investigations have indicated that photo-defluorination or photo-decarboxylation reactions may account for the phototoxicity for these compounds, detailed information on the mechanisms remains unclear. In this thesis, the photo-defluorination reaction of LF was explored in neutral water at pH 7.2. The fs-TA results revealed that the lowest lying excited singlet state species (S1) partially decayed into the ground state through fluorescence emission and partially underwent cleavage of the carbon-fluorine bond at position 8 to generate into a singlet aryl cation. Subsequently, intersystem crossing (ISC) allowing the transformation from singlet cation to triplet carbene was observed. Finally, a cyclization reaction with the N-ethyl chain took place for the triplet carbene to generate the final product. The mechanism underlying NF phototoxicity involves a photo-defluorination reaction in neutral water (pH=7.2). The fs-TA spectra indicated that the S1 underwent efficient ISC to swiftly transform into lowest excited triplet (T1) The ns-TA gained under nitrogen-saturated condition observed a new transient species produced from T1 that was proposed to be a transient species derived from the photo-defluorination reaction involving a SN2Ar* mechanism. The photo-defluorinated product ultimately experienced an ISC process to produce the final product. The photo-decarboxylation mechanism of TPA was studied in a neutral phosphate buffered solution (PBS). The fs-TA data revealed that S1 went through an efficient ISC to rapidly transform into T1 that then undergoes a photo-decarboxylation reaction to produce a triplet biradical species (denoted as TB3). The ns-TA and ns-TR3 results supplied evidence of the protonation process of TB3 that produces the neutral species (denoted as TBP3) that then decayed through ISC to give rise to the singlet TBP species, which underwent further reaction to make the final product (DTPA). The photo-decarboxylation reaction of Fp was explored in pure acetonitrile (MeCN). The second excited singlet (S2) went through internal conversion (IC) to decay to S1. Intriguingly, three different pathways for S1 decay co-exist. One pathway is fluorescence emission and the second is an ISC process. The third pathway is the homolysis of the carbon α bond reaction that proceeds to generate two radical species, one being a carboxyl species and the other being the residual, denoted as FpR that was liable to be oxidized under an oxygen-saturated condition to yield a new radical species with the addition of one oxygen molecule which is denoted as FOR that then experienced intramolecular hydrogen transfer (IHT) and dehydroxylation (DHO) to produce the final product.
DegreeDoctor of Philosophy
SubjectNorfloxacin
Time-resolved spectroscopy
Flurbiprofen
Nonsteroidal anti-inflammatory agents
Quinolone antibacterial agents
Dept/ProgramChemistry
Persistent Identifierhttp://hdl.handle.net/10722/195990
HKU Library Item IDb5153705

 

DC FieldValueLanguage
dc.contributor.advisorPhillips, DL-
dc.contributor.authorSu, Tao-
dc.contributor.author苏涛-
dc.date.accessioned2014-03-21T03:50:03Z-
dc.date.available2014-03-21T03:50:03Z-
dc.date.issued2013-
dc.identifier.citationSu, T. [苏涛]. (2013). Time-resolved spectroscopic studies of photo-defluorination and photo-decarboxylation reactions of selected fluoroquinolone antibiotic and nonsteroidal anti-inflammatory drugs. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b5153705-
dc.identifier.urihttp://hdl.handle.net/10722/195990-
dc.description.abstractThis thesis aimed to investigate the features and properties of the ground states, transient species and photoproducts involved in the photophysical and photochemical processes for four kinds of drug compounds: lomefloxacin (LF), norfloxacin (NF), tiaprofenic acid (TPA), and flurbiprofen (Fp). The investigation used femtosecond transient absorption (fs-TA), nanosecond transient absorption (ns-TA), UV/Vis absorption spectra (UV/Vis), nanosecond transient resonance Raman (ns-TR2) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR3), as well as density functional theory (DFT) calculations. Although many previous investigations have indicated that photo-defluorination or photo-decarboxylation reactions may account for the phototoxicity for these compounds, detailed information on the mechanisms remains unclear. In this thesis, the photo-defluorination reaction of LF was explored in neutral water at pH 7.2. The fs-TA results revealed that the lowest lying excited singlet state species (S1) partially decayed into the ground state through fluorescence emission and partially underwent cleavage of the carbon-fluorine bond at position 8 to generate into a singlet aryl cation. Subsequently, intersystem crossing (ISC) allowing the transformation from singlet cation to triplet carbene was observed. Finally, a cyclization reaction with the N-ethyl chain took place for the triplet carbene to generate the final product. The mechanism underlying NF phototoxicity involves a photo-defluorination reaction in neutral water (pH=7.2). The fs-TA spectra indicated that the S1 underwent efficient ISC to swiftly transform into lowest excited triplet (T1) The ns-TA gained under nitrogen-saturated condition observed a new transient species produced from T1 that was proposed to be a transient species derived from the photo-defluorination reaction involving a SN2Ar* mechanism. The photo-defluorinated product ultimately experienced an ISC process to produce the final product. The photo-decarboxylation mechanism of TPA was studied in a neutral phosphate buffered solution (PBS). The fs-TA data revealed that S1 went through an efficient ISC to rapidly transform into T1 that then undergoes a photo-decarboxylation reaction to produce a triplet biradical species (denoted as TB3). The ns-TA and ns-TR3 results supplied evidence of the protonation process of TB3 that produces the neutral species (denoted as TBP3) that then decayed through ISC to give rise to the singlet TBP species, which underwent further reaction to make the final product (DTPA). The photo-decarboxylation reaction of Fp was explored in pure acetonitrile (MeCN). The second excited singlet (S2) went through internal conversion (IC) to decay to S1. Intriguingly, three different pathways for S1 decay co-exist. One pathway is fluorescence emission and the second is an ISC process. The third pathway is the homolysis of the carbon α bond reaction that proceeds to generate two radical species, one being a carboxyl species and the other being the residual, denoted as FpR that was liable to be oxidized under an oxygen-saturated condition to yield a new radical species with the addition of one oxygen molecule which is denoted as FOR that then experienced intramolecular hydrogen transfer (IHT) and dehydroxylation (DHO) to produce the final product.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.subject.lcshNorfloxacin-
dc.subject.lcshTime-resolved spectroscopy-
dc.subject.lcshFlurbiprofen-
dc.subject.lcshNonsteroidal anti-inflammatory agents-
dc.subject.lcshQuinolone antibacterial agents-
dc.titleTime-resolved spectroscopic studies of photo-defluorination and photo-decarboxylation reactions of selected fluoroquinolone antibiotic and nonsteroidal anti-inflammatory drugs-
dc.typePG_Thesis-
dc.identifier.hkulb5153705-
dc.description.thesisnameDoctor of Philosophy-
dc.description.thesislevelDoctoral-
dc.description.thesisdisciplineChemistry-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b5153705-
dc.identifier.mmsid991036115899703414-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats