File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit

TitleStructure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit
Authors
Issue Date2017
PublisherAmerican Institute of Physics. The Journal's web site is located at http://jcp.aip.org/jcp/staff.jsp
Citation
Journal of Chemical Physics, 2017, v. 146 n. 23, article no. 234301, p. 1-11 How to Cite?
AbstractThis study presents results for the binding energy and geometry of the H2S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of De, EZPE, Do, and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of De are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance rSS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H2S dimer geometry and binding energy. As regards the structure of (H2S)2, MPn, CCSD, and CCSD(T) level values of rSS, obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy De are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies De with EZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields Do = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.
Persistent Identifierhttp://hdl.handle.net/10722/247353
ISSN
2023 Impact Factor: 3.1
2023 SCImago Journal Rankings: 1.101
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLemke, KH-
dc.date.accessioned2017-10-18T08:26:00Z-
dc.date.available2017-10-18T08:26:00Z-
dc.date.issued2017-
dc.identifier.citationJournal of Chemical Physics, 2017, v. 146 n. 23, article no. 234301, p. 1-11-
dc.identifier.issn0021-9606-
dc.identifier.urihttp://hdl.handle.net/10722/247353-
dc.description.abstractThis study presents results for the binding energy and geometry of the H2S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of De, EZPE, Do, and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of De are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance rSS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H2S dimer geometry and binding energy. As regards the structure of (H2S)2, MPn, CCSD, and CCSD(T) level values of rSS, obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy De are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies De with EZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields Do = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.-
dc.languageeng-
dc.publisherAmerican Institute of Physics. The Journal's web site is located at http://jcp.aip.org/jcp/staff.jsp-
dc.relation.ispartofJournal of Chemical Physics-
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Chemical Physics, 2017, v. 146 n. 23, article no. 234301, p. 1-11 and may be found at https://doi.org/10.1063/1.4985094-
dc.titleStructure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit-
dc.typeArticle-
dc.identifier.emailLemke, KH: kono@hku.hk-
dc.identifier.authorityLemke, KH=rp00729-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1063/1.4985094-
dc.identifier.scopuseid_2-s2.0-85020503244-
dc.identifier.hkuros280923-
dc.identifier.volume146-
dc.identifier.issue23-
dc.identifier.spagearticle no. 234301, p. 1-
dc.identifier.epagearticle no. 234301, p. 11-
dc.identifier.isiWOS:000403376600001-
dc.publisher.placeUnited States-
dc.identifier.issnl0021-9606-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats