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Abstract—Eigen-based adaptive filters have shown potential for
providing a superior attenuation of clutter in color flow imaging.
Critical for the success of this technique is the correct selection
of filter order. In this work we review and compare filter order
selection schemes for eigen-based filters in an in vivo context.

Data was acquired from a thyroid tumor (PRF = 250 Hz,
ensemble size = 12), where substantial tissue movement was
present due to carotid artery pulsations, respiratory movements,
and probe navigation. Eigen-filtering performance was evaluated
for 1) an eigenvalue spectrum threshold, 2) a threshold on the
ratio of successive eigenvalues, and 3) a threshold on eigenvector
mean frequency estimated by the autocorrelation approach.

Based on the observed eigenvalue and eigen-frequency dis-
tributions in analytical and in vivo examples, all filter order
algorithms investigated suffered from potential pitfalls in specific
Doppler scenarios. In the in vivo examples, the fixed order
eigenfilter gave a sufficient suppression of clutter, but also
removed substantial blood signal. Thresholding the ratio of
eigenvalues better retained signal from blood, but also spurious
artifacts was observed. The most consistent results were achieved
by thresholding the mean frequency of the eigenvectors. The
results demonstrate that given a suitable filter order algorithm,
robust filtering can be achieved with the eigen-based approach.

I. INTRODUCTION

Central to conventional color flow imaging (CFI) algorithms
is the use of a clutter filter to attenuate signal from surrounding
tissue structures. This clutter component is present also in
vessel lumens due to reverberations and beam sidelobes, and
can have a substantially higher signal power than the blood
signal component of interest. If not sufficiently attenuated,
clutter may lead to a false coloring of tissue regions and biased
blood velocity estimates.

Clutter rejection has conventionally been done by high-pass
filtering the slow-time signal ensembles at each range bin [1].
However, due to the inability of these filters to adapt their stop
band to the clutter component, a sufficient attenuation may not
be achieved when there are substantial tissue movements that
give rise to nonzero Doppler frequencies.

More advanced filters have been proposed that do adapt
the stop band to the clutter component [2]. One particular
method that has shown promise is the eigen-based approach.
In this approach the slow-time signal is expanded into its
principal signal components as given by the eigenvectors of
the signal correlation matrix, and clutter filtering is achieved
by subtracting the principal signal components identified as
clutter from the original signal [2], [3]. However, some aspects
of this technique still remains to be investigated before it can

be established in CFI. One important aspect is the selection
of filter order, i.e. the number of clutter eigen-components to
subtract from the original signal. If the filter order is chosen
incorrectly, clutter may not be sufficiently attenuated, or blood
signal may also be removed in the filtering process. Further,
since the Doppler signal mixture vary throughout the image
region and the cardiac cycle, the most suitable filter order vary
accordingly, thus an adaptive filter order algorithm is needed.

In this work we investigate strategies for filter order selec-
tion in eigen-based clutter filtering in CFI, and compare the
performance of these algorithms in an in vivo example where
adaptive clutter filtering may be of particular use.

II. BACKGROUND THEORY

A. General signal and filtering model

The Doppler signal from each image sample is in general
assumed to consist of three components; clutter c present
due to tissue signal reverberations and beam side lobes,
blood signal b, and thermal noise n. Assuming independent
components, the general signal model is then given by:

s = c + b + n. (1)

To separate the tissue and blood components, the signal is
expanded into its principal components as can be achieved
through the Karhunen-Loève expansion, given by [4]:

x =
ND∑
k=1

γkek, E{γkγ∗
l } =

{
λk k = l
0 k �= l

(2)

where ND is the ensemble size, and ek and λk are the
eigenvectors and corresponding eigenvalues of the signal cor-
relation matrix Rx, sorted on decreasing eigenvalues. Each
eigenvector, or principal component, accounts for a part of
the total signal variation, and can be associated with any of
the three constituent signal components in (1). In particular for
the clutter filtering algorithm, eigen-components representing
clutter are identified and subtracted from the original slow-
time signal.

B. Overview of eigen-based clutter filtering

After data acquisition, an ensemble of ND slow-time sam-
ples is available for each image point, sampled at the pulse
repetition frequency (PRF). The first step in eigen-based clutter
filtering is the estimation of the slow-time signal correlation
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Fig. 1. An illustration of signal characteristics that influence filter order
selection for a hypothetical Doppler spectrum. Important parameters include
the clutter bandwidth Bc and spectral location wc, and the clutter-to-blood
signal ratio CBR and spectral separation CBSS.

matrix. In this work the correlation matrix is estimated by
averaging the outer product of M signal vectors in a spatial
region centered around each image point, as given by

R̂x =
1
M

M∑
m=1

xmx∗T
m , (3)

where the averaging of signal vectors xm is done both
radially and laterally. In the second step, ND eigenvectors
and eigenvalues of R̂x are computed via algorithms such as
power iterations or QR factorization [4]. A subset of these
eigenvectors Φc is in a third step identified as representing
clutter, and is in the fourth and final step removed through
projection filtering y = Px. The filter projection matrix is
here formed as:

P = I −
Kc∑
k=1

eke∗T
k , ek ∈ Φc, (4)

where Kc is the number of clutter eigen-components.

III. FILTER ORDER SELECTION

In order to successfully attenuate the clutter signal compo-
nent using the eigen-based approach, it is necessary to identify
1) the number of eigen-components Kc that represent clutter,
and 2) the particular subset of clutter eigen-components Φc.
The order of the resulting clutter filter is defined as Kc − 1.

The distribution of eigen-components over the constituent
signal components will be signal dependent. From a Fourier
perspective one can identify several parameters that will in-
fluence the selection of clutter eigen-components. Some are
shown in Fig. 1 for a hypothetical Doppler spectrum, including
the clutter-to-blood signal ratio (CBR), the clutter Doppler
center frequency ωc and bandwidth Bc, and the clutter-to-
blood spectral separation (CBSS). These parameters will vary
for different imaging scenarios, and also during the cardiac cy-
cle. For high-frequency imaging CBR may actually approach
zero due to the Rayleigh scattering properties of blood. The
most dominant eigen-components may then be distributed over
both clutter and blood. Further, for a narrow CBSS, a larger
overlap between components in the eigenspectrum can be seen.

An increasing clutter bandwidth typically relates to an
increasing number of clutter eigen-components Kc. This band-
width is mostly given by the observation time as determined by
the PRF and ensemble size ND, but also through accelerated
movement. The clutter Doppler component may also exhibit
a shift in center frequency due to tissue movement.

Algorithms for selecting clutter eigen-components in CFI
has previously been reported based on the information avail-
able in both the eigenvalue spectrum [2], [3], [5], and in
the frequency content of individual eigenvectors [6]. These
concepts and their potential pitfalls will be further described
in the following subsections.

A. Eigenvalue-based algorithms

The eigenvalues contain information about the signal energy
represented by the individual eigenvectors. A dominant signal
component that constitute a large part of the total signal energy
will be represented by eigenvectors with large corresponding
eigenvalues. Due to its dominant and low-bandwidth nature
this is often the case for the clutter component [2]. This
observation has been the foundation for selection criteria
used in prior investigations, where a subset of the most
dominant eigenvectors have been selected as clutter eigen-
components [2], [3].

One proposed algorithm has been to include a fixed number
of the most dominant eigenvectors. However, as the signal
characteristics vary in both space and time, an improved algo-
rithm might be to select the eigenvectors with corresponding
eigenvalues above a predefined threshold λc. The subset of
eigenvectors is then given by:

Φc = {ek | λk > λc} , k = 1, . . . , ND. (5)

The threshold λc can for instance be set relative to the most
dominant eigenvalue.

Similary, the number of clutter eigen-components can also
be chosen based on the shape of the eigenspectrum, more
specifically by thresholding the eigenvalue differences λk −
λk+1 or ratios λk/λk+1 [5]. The rationale for such algorithms
is that the eigenspectrum will flatten once higher bandwidth
signals such as that of blood and thermal noise are introduced.

B. Frequency-based algorithms

By investigating the frequency content of the individual
eigenvectors, information is given about the spectral band
of the Doppler spectrum the eigenvectors represent. As the
tissue movement typically is small compared to that of blood
flow, it is reasonable to identify eigenvectors representing low-
frequency parts of the Doppler spectrum as clutter.

The mean frequency of the k’th eigenvector ek, can be
estimated using the autocorrelation technique [7], as given by:

ω̂k = � R̂1,k = �

[
1

ND − 1

ND−2∑
m=0

e∗
k(m)ek(m + 1)

]
, (6)

where R̂1,k is the sample correlation function of lag one,
and ω̂k is the estimated mean frequency of eigenvector ek.
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Fig. 2. The concepts and pitfalls of different filter order algorithms. In the
first example, a moderate signal scenario is shown where both methods are
shown to identify the correct clutter eigen-components. In the second example,
the occurrence of zero CBR can be seen to infer problems for the eigenvalue-
based algorithm. In the third row, a narrow CBSS infers problems for the
frequency-based algorithm.

An eigenvector is included in the clutter basis subset if its
mean frequency lies within a predefined clutter bandwidth Bc

centered around the center clutter frequency ωc, as given by:

Φc =
{

ek | |ω̂k − ωc| <
1
2
Bc

}
, k = 1, . . . , ND. (7)

In practise, the mean Doppler clutter frequency ωc can often
be assumed zero. However, as reported by Yu et al [6], an
improved performance can be achieved by setting it equal to
the mean frequency of the most dominant eigenvector from (6),
ω̂c = ω̂1, as this may compensate for mean frequency shifts
of the clutter spectrum.

C. Comparison of filter order algorithms

The concepts and potential pitfalls of eigenvalue and fre-
quency thresholding are illustrated in Fig. 2 for three analytical
Doppler scenarios generated using the stationary Doppler
signal model described in [8]. The different Doppler scenarios
and relevant parameters related to Fig. 1 are shown in the
left column. In the right column the eigenvalues of the signal
correlation matrix are plotted against the mean frequency of
the corresponding eigenvectors. This plot allows us to compare
the performance of the selection criteria, and also to investigate
if a combination of the criteria can be used to improve the
identification of clutter eigen-components.

In the first Doppler scenario a moderate CBR and CBSS
is given, and it can be observed that both thresholding cri-

TABLE I
ULTRASOUND ACQUISITION PARAMETERS

Acquisition parameter Value
Clinical object Thyroid nodule

Probe GE M12L
Center frequency, f0 6.7 MHz

No. of periods in pulse 2.5
F-number (transmit / receive) 2.5 / 1.4

Pulse repetition frequency (PRF) 250 Hz
Ensemble size 12

teria can give reasonable results, isolating the dominant and
low-frequency clutter component. A potential pitfall for the
eigenvalue-based criteria is illustrated for the second scenario,
where a zero CBR is given. In this case it can be observed
that it is difficult to choose an eigenvalue threshold without
also including blood eigen-components. The frequency-based
algorithm can in this case still isolate the clutter eigen-
components. In the third row an example is shown where a
narrow CBSS is given. The resulting eigenvalues from clutter
and blood can then be seen to cluster in frequency, causing
problems for the frequency-based thresholds. As can be seen
for this example, the eigenvalue threshold is then still able to
isolate the clutter eigen-components.

IV. EXPERIMENTAL RESULTS

The filter order algorithms were evaluated in the in vivo
setting of a thyroid tumor. The aim in diagnosis might here
be to investigate the vascularization inside the tumor, which
may be related to malignancy. Tissue movement was present
due to carotid artery pulsations, respiratory movements, and
probe navigation. Coupled with a low PRF of 250 Hz to image
the lowest possible flow made this a challenging scenario for
clutter filters. Relevant ultrasound acquisition parameters are
listed in Table I. The filter parameter setup, e.g. the threshold
value, were chosen to produce the best visual result for the
given examples. It was apparently not possible to achieve
reasonable results using a simple eigenvalue threshold for
these data, and these results are therefore not shown.

In Fig. 3 and 4, power-Doppler images for two frames of
thyroid data are shown for four different filters. A) A 5th
order polynomial regression filter was used as a reference.
In the same image, the thyroid tumor and carotid artery have
been outlined. As can be seen, this filter did not attenuate
clutter sufficiently for the given examples. B) An eigenfilter
with a fixed order of 4 gave a sufficient attenuation of clutter,
but also severely attenuated the blood signal. C) Thresholding
the eigenvalue ratios did retain the signal from blood, but
spurious artifacts could also be observed as shown in Fig. 4. D)
Using a mean-frequency threshold provided consistent clutter
attenuation while also retaining the blood signal.

The rightmost column in Fig. 3 and 4, shows the distribution
of eigenvalues vs. mean frequency as introduced in Fig 2.
The examples are taken from a region of tissue only, and
a region with tissue and blood. Observe for instance how
the mean frequency algorithm most probably also includes
a blood eigencomponent in the lower plot of Fig 3, and
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Fig. 3. Example 1: Filtered images of a Thyroid tumor. A) Polynomial
regression, 5th order B) Fixed order Eigenfilter, 4th order, C) Thresholding
ratio of eigenvalues, D)Thresholding mean frequency of eigenvectors. In the
rightmost column, eigenvalue vs. frequency plots provide examples of regions
where both thresholding methods fail for the given example.
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Fig. 4. Example 2: Filtered images of a Thyroid tumor. A) Polynomial
regression, 5th order B) Fixed order Eigenfilter, 4th order, C) Thresholding
ratio of eigenvalues, D)Thresholding mean frequency of eigenvectors. In the
rightmost column, eigenvalue vs. frequency plots provide examples of regions
where both thresholding methods fail for the given example.

how the eigenratio algorithm does not include all clutter
eigencomponents in the upper plot in Fig. 4.

V. DISCUSSION

Different algorithms for the selection of filter order in eigen-
based filtering and their potential pitfalls have been reviewed
through analytical Doppler spectra and in vivo examples. The-
oretically, both the eigenvalue and frequency-based methods
may lead to suboptimal results when used exclusively.

Common to eigenvalue-based algorithms is the assumption
of a dominant clutter component. This is however not always
the case, especially for higher imaging frequencies due to the
Rayleigh scattering properties of blood. A disadvantage of the
frequency-based algorithm is the predefined clutter bandwidth
threshold. As the bandwidth varies in both space and time, the
threshold should vary accordingly. Also, the frequency content
covered by the eigenvectors may be distributed over extended
regions, representing both clutter and blood. For these cases
the estimated mean frequency can be severely biased.

Observing that one algorithm successfully identifies the
correct clutter components while another fails and vice versa,
indicates that the combination of the criteria could be used to
achieve a more robust filter selection algorithm. Referring to
the eigenvalue vs. frequency plots in Fig. 2, a 2-D segmen-
tation algorithm could be developed to more properly isolate
the eigen-components for the wide range of Doppler scenarios
that may be encountered. This is considered future work.

For the in vivo examples, the most consistent results were
achieved when using the mean frequency criteria. Although the
eigenratio algorithm also provided reasonable results, spurious
artifacts was observed which needs further investigation. The
results demonstrate that given a suitable filter order selection
algorithm, robust filtering performance can be achieved with
the eigen-based approach. More work is needed to map the
performance of the filter order selection algorithms and eigen-
based clutter filtering in a wider range of clinical applications.

VI. CONCLUSION

All algorithms for filter order selection investigated suffered
from pitfalls in certain Doppler signal scenarios. In in vivo
examples, the mean frequency criteria gave the most con-
sistent results, and demonstrated that robust filtering can be
achieved even in a challenging low-PRF example with tissue
movement. By combining the information available in both the
eigenvalues and eigenvectors, an improved performance may
be achieved. This is the focus for further work.
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