Reducing Dynamic Power Consumption in FPGAs
Using Precomputation

Chi Chiu Tsang and Hayden K.-H. So

Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong
{cctsang, hso}@eee.hku.hk

Abstract—This paper studies the effectiveness of employing
precomputation in reducing dynamic power consumption in
commercial off-the-shelf (COTS) FPGAs. Precomputation is a
high-level logic optimization technique that lowers power con-
sumption of a design by disabling part of the circuit based
on a few relatively simple precomputation conditions. With
careful design considerations, the increased logic utilization
and its associated power consumption can be justified by the
power saving resulted from disabling a much larger part of
the design. This fundamental trade-off benefits particularly well
from the tile-based structures of modern FPGAs that consist
of large number of redundant logic cells. Using the design
of a comparator as an example, we study the trade-offs and
unique opportunities provided by modern FPGA architectures
in employing precomputation as a technique to reduce dynamic
power consumption. In our example, 83% of dynamic power
from logic, or 43.1% of total dynamic power including routing
is reduced with negligible increase in resource consumption.

I. INTRODUCTION

Reducing power consumption of a design running on field
programmable gate arrays (FPGAs) is of prime concern not
only for embedded systems, but also for high-performance
computing systems where power consumption is quickly lim-
iting their performances. A number of factors contribute to
the total power consumption of an FPGA when it is config-
ured. First, because of leakage current in deep sub-micron
technologies, static power is consumed as soon as the device is
powered. To tackle this problem, a number of researchers have
already proposed solutions such as the use of high threshold
(V4) devices in FPGAs [1].

Another major contributor to the power consumption of a
configured FPGA can be broadly classified as its dynamic
power consumption that results from signal switching activi-
ties. As a first order estimation, the dynamic power consump-
tion, Py, of a device can be calculated as

Pioxca-C-V?- fup (1

where « is the probability that a signal switches, C is the
load capacitance associated with the switching activities, V'
is the voltage swing of the signal, and f. is the clock
frequency. In [2], dynamic voltage scaling was used to reduce
power consumption, which tackled the factor V' in (1). In
this work, we aim to reduce dynamic power consumption
of commercial off-the-shelf (COTS) FPGAs by reducing the
effective load capacitance, Ccyr = o - C. In particular, we
study the effectiveness of the use of precomputation on FPGAs
to reduce dynamic power consumption.

978-1-4244-4377-2/09/$25.00 © 2009 IEEE

407

Precomputation [3] is a well-known logic optimization
technique originally developed to reduce power consumption
of application specific integrated circuits (ASICs). The basic
idea of precomputation is to examine the input of a circuit
module on each clock cycle to detect for conditions under
which part of the complex circuit module may be disabled. In
these cases, the output of the circuit module will be computed
using a smaller sub-module or only part of the original module
instead of the complete circuit.

Depending on the actual disabling mechanism, both static
power [4] and dynamic power consumption may be reduced
as a result. In this work, we limit our focus to reducing dy-
namic power consumption of COTS FPGAs by conditionally
disabling switching activities in part of the design, thereby
reducing «. This, however, comes at an expense of increased
C. When designed correctly, an optimal effective capacitance
Ceypy can be achieved that results in much lower dynamic
power consumption.

The contribution of this work can be summarized as follows:

« Identified precomputation as an effective dynamic power
reduction technique for current generation COTS FPGAs
using unmodified vendor software;

o Studied trade-offs in employing precomputation in cur-
rent FPGA devices and unique opportunities provided by
FPGA architectures that are absent in ASIC designs;

o Proposed architectural enhancements in next-generation
FPGA devices that may further benefit from precompu-
tation techniques in lowering power consumption.

In the next section, using the design of a comparator as a
case study, we study the use of precomputation on FPGAs. In
Sec. III, we discuss the trade-offs in using such technique in
current generation FPGAs and propose future enhancements.
Finally we conclude the paper in Sec. IV.

II. CASE STUDY: A COMPARATOR

In this section, we present a detail case study of im-
plementing a simple comparator using precomputation on a
commercial off-the-shelf FPGA.

A. Base Case

The simple comparator of two 32-bit unsigned numbers
shown in Fig. 1(a) forms the base case for our comparison.
It compares the values of A and B and output 1 in D
if A > B, 0 otherwise. The design was specified using
behavioral VHDL, synthesized and implemented on a Xilinx

FPT 2009

A[31:0] A

>

(a) A comparator.

B[31:0] B

A[31]

B[31]

A[30:0]
B[30:0] "’
DOJ_CE

(b) Comparator with simple precompuation on MSBs of both
input.

Fig. 1. Reduce power consumption by precomputation on most significant
bits of the input.

Virtex-5 device using standard vendor tools. The vendor’s tools
were constrained to utilize only resources from within one
clock region on the chip to avoid power consumption due to
unnecessary activations of regional clock buffers [5].

To obtain realistic dynamic power consumption figures, the
design was fully placed and routed. The input A and B were
then driven by a sequence of pseudo-random data for 1000
cycles. The resulting simulation trace was then used by the
Xilinx XPower Analyzer tool to estimate power consumption.

B. Precomputation Transformation

Our first attempt in lowering dynamic power consumption
of the comparator is based on the following observation: If the
most significant bit (MSB) of A, Agsy, is larger than the MSB
of B, B3y, then A > B. Slmllarly, As1 < B3 = A < B.
However, if A3; = Bsi, then the values of the remaining bits
of the input, A3y, o and Bsg.. o, must be used to determine
the final result. This observation leads to the implementation
shown in Fig. 1(b).

Comparing to the original circuit in Fig. 1(a), the two 32-bit
input registers, which is depicted as a single 64-bit register R
to simplify the drawing, are spilt into a combination of a pair
fo single bit register (R;) and a 2 x 31-bit register (R;). The
MSB of the input are connected to the top register 12, while
the remaining bits are connected to the bottom register Rp.

The loading of input data into the input registers are
controlled by the result of comparing the values of As; and
Bsq. If their values are different, then R}, is disabled while As;
and Bs; are loaded into R;. In the next cycle, the registered
values of A3y and Bs; are used to compute the final result of
the comparison, D, i.e., D = AsqBsq. This result is selected
by the final multiplexor and the result is registered into the
output register.

On the other hand, if the values of Az; and Bj; are
identical, then the bottom halves of the input registers, Ry
is enabled. The remaining bits of A and B are loaded and a
full 31-bit comparison must be performed in the next cycle to
determine the value of D.

A[31:32—-m]
B[31:32—-m]

A[31-m:0]
B[31-m:0]

=]

Fig. 2. Comparator with m most significant bits precompuation on the input.

To estimate the potential power saving from such trans-
formation, note that in each cycle, internal signal switching
activities occur only in either the top or the bottom half of the
circuit, which is determined by the values of A3; and Bs;.
The expected dynamic power consumption is therefore:

E(power) = P(A3z1 # Bs1) - Wy
+ P(As1 = Bsy) - Wy, + overhead

where W, and W, are power consumption of the top and
bottom half of the circuit respectively. Since the input A and
B are random, P(A31 = B31) = P(A31 + Bgl) =1/2. As
a first order estimation, we may assume that the 31-bit com-
parator in the bottom part consumes approximately the same
power as the original unmodified 32-bit comparator, while
the top half requires relatively negligible power. As a result,
excluding the overhead of precomputation transformation, the
expected dynamic power consumption should be reduced by
approximately 50% when compared to the original circuit.

2

C. Multi-bit Precomputation Transformation

In general, instead of examining just the single most signifi-
cant bit of an input, the precomputation logic presented above
can be applied to the general case where the m most significant
bits of an input are compared. In other words, observe that:

Asi,..30-m > D31, 32-m = A>B and 3)
A3y, 32-m < Bs1,..32-m = A< B. 4

Based on this observation, a multi-bit percomputation im-
plementation of the comparator can be realized as shown in
Fig. 2. In contrast to the design shown in Fig. 1(b) where
only the MSBs are examined, comparing the m most signif-
icant bits decreases the probability that the power-consuming
comparator in the bottom must be used. In particular,

P(As1,... 32-m = B31,... 30-m) = QLm

However, as m increases, the logic complexity of the top half
of the circuit increases. When compared to the architecture
depicted in Fig. 1(b), the circuit in Fig. 2 must employ a small,
m-bit comparator in the top-half of the circuit. Furthermore,
an m-bit equality comparison must be performed as part of
the precomputation. Both of these additional circuitries incur
extra power consumption that will inevitably offset the power
conserved by disabling the bottom half of the circuit. As a
result, there is an optimal m such that the saving in power
consumption is maximal.

408

Normalized Power Consumption

Percentage (%)

—©6— Logic+Signals

5 10 15 20 25 30
m

Fig. 3. Power consumption of comparators with precomputation normalized
against standard compartor without precomputation.

Fig. 3 shows the normalized power consumption of com-
parators with precomputations on the m most significant bits
against the base case comparator without any precomputation
to highlight power saving due to precomputation. In the
diagram, logic power consumption (marked as “Logic”)
refers to the dynamic power consumption incurs by logic
elements such as LUTs. Signal power consumption (marked
as “Signals™) refers to the dynamic power consumption incurs
from switching activities of signal routes.

From the result, it can be observed that the reduced
switching activity provides significant savings in logic power
consumption. The best saving is obtained in the case of m = 4
where logic power consumption is reduced by 83%. Beyond
that, the saving in logic power consumption is reduced as the
size of the additional equality comparison increases with m.
However, the effect of this power overhead is mellow and only
out-weight the saving in reduced activities when m > 29.

The power consumption arising from signal activities in
the interconnect network is also reduced. The best saving is
obtained in the case of m = 7 where the signal power is
reduced by 16.8%. When compared to the reduction in lower
power consumption, the reduction in signal power is limited
by the rapid increase in routing complexities as m increases.
Furthermore, when compared to the base case comparator, the
large number of clock enable (CE) signals that control all the
input registers incur a large amount of dynamic signal power
consumption.

Nevertheless, the overall power saving due to precompu-
tation with respect to the sum of logic and signal power
consumption remains encouraging. At m = 7, a saving of
43.1% is obtained.

Note that when clock and I/O power are also taken into
account, the total dynamic power saving is reduced to only
7.68%. This is mainly due to the fact that only one single
comparator is implemented in the entire FPGA, making the
I/O and clocking overhead relatively high. In a real system
where a large number of computational blocks are employed,
such overhead is expected to be much lower.

LUTs and Occupied Slices Usage

Number

16 —8— LUTs
Occ. Slices
14
0 5 10 15 20 25 30

m

Fig. 4. Logic resource utilization of comparators with precomputation.

III. FPGA ADVANTAGES

In this section, we highlight features unique to FPGAs that
make precomputation-based optimization a particularly viable
option for lowering dynamic power consumption.

Recall that the fundamental trade-off in employing a
percomputation-based architecture is between the decrease in
power consumption due to lower signal activities and the
increase in power consumption due to the additional logic
and interconnect required for precomputation. Because of their
architectures, modern FPGAs provide unique opportunities to
lower such overhead, making precomputation an appealing
technique.

At the lowest level of an SRAM-based FPGA, the core
of its reconfigurable fabric consists of an array of lookup
tables (LUTs) and flip-flops (FFs) connected through a pro-
grammable interconnect network. Often time these reconfig-
urable fabrics are grouped into larger blocks both physically
and conceptually. For example, in a Xilinx Virtex-5 device, 4
LUTs and 4 FFs, as well as a handful of other logical devices
are packed physically as a slice. By grouping these low-level
reconfigurable fabrics into a macro-block, it is possible to
implement dedicated routing and configuration options that
provide higher performance and lower power consumption.
However, also because of such grouping, it is becoming much
harder for even proprietary vendor software to pack unrelated
logic into the same macro-block. As such, many vendor
software would report such a block as being occupied even
when not all of the low-level reconfigurable fabric are utilized.

Fig. 4 depicts the logic resource utilizations of the compara-
tors with precomputation on the m most significant bits. As
expected from the precomputation architecture, the number of
computational logic in terms of LUTs being utilized increases
as m increases. However, the number of occupied slices
remains fairly stable over the entire range. When examined
closely, it can be seen that most of the slices are occupied to
provide FFs as input registers, leaving the LUTs unused. As
m increases, more LUTs are demanded. As these additional
circuits are closely related to the existing design, many of
them can easily be packed into the slices that were originally

409

FFs and LUT+FF Pairs

85

o}
Qo
£
=]
=
—H&— LUT+FF Pairs
FFs
60
0 5 10 15 20 25 30
m
Fig. 5. Flip-flops utilization of comparators with precomputation.

configured with only FFs.

Such increase in packing efficiency is illustrated in Fig. 5
as the number of “LUT+FF pairs” increases with m. In the
figure, the number of flip-flop used remains constant at 66 for
all cases where 1 < m < 31, with 64 of them act as input
registers; 1 holds the result of the equality comparison; and
1 stores the output result. A “LUT+FF pair” is formed when
both the LUT and its adjacent FF within the same slice are
utilized in a design. Based on this notation, the increase in
“LUT+FF pair” count in Fig. 5 clearly indicates that more
and more logic are packed into previously unoccupied LUTs
adjacent to the already utilized FFs within the same slice as
m increases.

In other words, these extra functionalities for precompu-
tation appear to have incurred almost no new resources on
an FPGA. Although this phenomenon may seem to be a
mere accounting discrepancy, it does illustrate a number of
important opportunities for precomputation-based techniques
to be used on FPGA devices. First, unless FPGA tools can
effectively pack unrelated logic into unoccupied LUTs and FFs
of a slice, many of them will remain underutilized in the final
design. Such packing is particularly difficult when a module-
based design flow is employed where most modules were
independently pre-placed-and-routed. In contrast, additional
precomputation logic can easily be placed-and-routed together
with the original logic as a module, making the vendor’s tools
much easier to take advantage of the unused LUTs and FFs.

Furthermore, as FPGA devices are migrating onto newer
technology nodes, new techniques are needed to cope with
the ever-increasing leakage power. One way is to employ
multi-V; or multi-Vy, techniques in future FPGA devices. By
controlling the supply and threshold voltage, the performance
and leakage power of different parts of the device can be
independently controlled during run-time. Due to cost and
technology limitations, blocks of configurable logic are likely
to form the basis of control. In these devices, precomputation-
techniques will again be able to take advantage of the under-
utilized resources.

Finally, apart from reducing dynamic switching activities
through the disabling of FFs, precomputation may also be

employed to dynamically control the activation of different
parts of the device by physical means [4]. Future FPGA archi-
tectures may therefore consider having dedicated routings to
allow for power-efficient, fine-grained and low-level control of
the device during run-time using user-defined precomputation
techniques.

IV. CONCLUSION

In this paper we have presented the precomputation-based
optimization technique as an effective option to reduce dy-
namic power consumption on commercial off-the-shelf FPGAs
without any need of special software. The design of a simple
comparator has been used as a case study to illustrate the
working principle of such technique. By appending a small
precomputational logic to the original design, a reduction of
84% in dynamic logic power consumption and 43% combined
logic and signal power consumption has been achieved. Such
technique is applicable to current commercial FPGAs and may
be integrated seamlessly into existing module-based design
methodologies.

The fundamental trade-off associated with such technique
is between the saving in dynamic power consumption due to
lowered signal activities and the increased power consumption
due to the addition of precomputational logic. We have argued
that the redundancy presented in modern SRAM-based FPGAs
provides an excellent platform that favors such trade-off.

Furthermore, similar precomputation-based optimization
technique is readily applicable to future FPGA architectures.
It is expected that configurable logic resources in these future
architectures will be grouped into moderately sized blocks that
may be turned on or off dynamically during run-time for sake
of reducing leakage power consumption. If suitable low-level
control mechanisms are made available by the architecture,
it will be possible to employ similar precomputation-based
technique as described in this work to control the activation
of different regions in these future devices.

REFERENCES

[1] E Li, Y. Lin, L. He, and J. Cong, “Low-power FPGA using pre-
defined dual-Vdd/dual-Vt fabrics,” in FPGA ’04: Proceedings of the 2004
ACM/SIGDA 12t" international symposium on Field programmable gate
arrays. New York, NY, USA: ACM, 2004, pp. 42-50.

[2] C. Chow, L. Tsui, P. Leong, W. Luk, and S. Wilton, “Dynamic voltage
scaling for commercial FPGAs,” in Field-Programmable Technology,
2005. Proceedings. 2005 IEEE International Conference on, Dec. 2005,
pp. 173-180.

[3] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,
“Precomputation-based sequential logic optimization for low power,” Very
Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 2,
no. 4, pp. 426-436, Dec 1994.

[4] A. Abddollahi, M. Pedarm, F. Fallah, and I. Ghosh, “Precomputation-
based guarding for dynamic and leakage power reduction,” in Computer
Design, 2003. Proceedings. 21 st International Conference on, Oct. 2003,
pp. 90-97.

[5] L. Wang, M. French, A. Davoodi, and D. Agarwal, “FPGA dy-
namic power minimization through placement and routing constraints,”
EURASIP J. Embedded Syst., vol. 2006, no. 1, pp. 7-7, 2006.

410

