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Abstract— This paper proposes a novel face texture mapping 
framework to transform faces with different poses into a 
unique texture map. Under this framework, texture mapping 
can be realized by utilizing a generic 3D face model, 
standard Haar-like feature based detector, active 
appearance model and pose estimation algorithm. By this 
texture map, correspondence of every pixel at the face across 
multiple distinct input images can then be established, which 
enables super-resolution algorithms to be applied directly on 
registered texture map to render high resolution faces. This 
paper details the proposed framework, and illustrates how 
the proposed super-resolution algorithm works with the help 
of weighted average and median filters. Convincing 
experimental results are also presented to validate the 
effectiveness of the proposed framework and super-
resolution algorithm. 

Keywords-Super-resolution, face reconstruction; Pose 
estimation, Texture mapping; Face model 

I.  INTRODUCTION 
Face recognition in visual surveillance are the key 

technologies for a number of application domains ranging 
from simple access authentications, to more complicated 
face recognition-based video retrieval applications. 
Recently, these algorithms have become very mature and 
reliable to the extent that they have already been put into 
practical applications for use in industrial and consumer 
electronics. However, the quality of the recorded images or 
videos is sometimes low, where objects of interest like 
human faces are usually captured at a relatively low 
resolution which is not sufficient for reliable recognition of 
individuals. The use of super-resolution (SR) techniques 
appears to be a natural solution to it and may be promising 
for improving the quality of such visual materials. 

Several approaches of SR on faces have been reported 
in literature, which can be coarsely classified into 
reconstruction based [1-3] or learning based [4-8] 
approaches. In [1], a SR frame is computed using 
information from past and future low-resolution (LR) 
frames. It calculates the optical flow between interpolated 
versions of these frames and the initial SR frame. The 
updated SR frames is the average of the current SR frames 
and warped versions of neighboring interpolated LR 
frames. However, the algorithm could have poor 
performance when prominent movement of the face 
occurred between frames. In [2] the motion between 
frames is also estimated using optical flow. A probabilistic 
scheme is employed to determine whether the pixels in 
each input frame are visible in the SR frame or not, so that 
only the visible pixels are used to update the SR frame. In 
[3], after obtaining the optical flow by tracking feature 
points on the faces, epipolar geometry is utilized to reject 

outlying low vectors, which could improve the registration 
of the face over multiple frames. Capel and Zisserman [4], 
on the other hand, used eigenface from a training face 
database as model prior to constrain and super-resolve 
low-resolution face images. To further improve the 
performance, they divided human face into six unrelated 
parts and apply PCA [9] on  them separately. A similar 
method was proposed by Baker and Kanade[5]. They 
established the prior based on a set of training face images 
by using Gaussian, Laplacian and feature pyramids. 
Freeman and Pasztor [6] tried to recover the lost high-
frequency information from low-level image primitives, 
which were learnt from several general training images. 
They mapped the images and scenes into a Markov 
network, and learned the parameters of the network from 
the training data. A very similar image hallucination 
approach was also introduced in [7], in which the primal 
sketch is used as the prior to recover the smoothed high-
frequency information.  Jia and Gong [8] integrated the 
tasks of super-resolution and recognition by directly 
computing a maximum likelihood to identity parameter 
vector in high-resolution tensor space for recognition. 

Our literature review reveals that learning based 
approaches appear to perform well only when high-
resolution images were used in the training datasets as 
prior, but it may not perform equally well when high-
resolution training images are not available. On the other 
hand, current reconstruction based approaches normally 
assume rigid planar objects or simplified scenes to ease the 
alignment of objects across multiple frames, which makes 
them less effective in handling objects or scenes that are 
not rigid nor planar, for instance, human faces. As a result, 
a more sophisticated registration method is required for a 
more accurate 3D human face reconstruction. 

To overcome these hurdles, this paper proposes a novel 
face super-resolution approach by using texture mapping 
on a generic 3D model, which was derived from an 
automatic 3D face reconstruction framework from a single 
image. In this reconstruction framework, facial features of 
input image are detected automatically. Then, a generic 3D 
face model is adopted, where the transformation matrix to 
project 3D face onto input 2D image can be estimated by 
calculating the pseudo inverse matrix of the 3D 
coordinates of detected facial features. Texture of each 
patch in input image is extracted and interpolated to 
rebuild the texture map of the 3D face. For each LR frame, 
mapping from input image to the aforementioned texture 
map is functionally similar to  the registration in the SR 
process. SR frame can then be obtained by fusing texture 
maps of each LR frame, or by getting the scattered points 
from each LR frame to produce a high resolution (HR) 
texture map by interpolation. 
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In Section 2, we introduce the concept of our proposed 
texture mapping framework, and the details of texture map 
registration are described. With the registered texture map, 
different SR schemes, which will be detailed in Section 3, 
could be adopted. Experimental results are provided in 
Section 4 to evaluate the effectiveness of the proposed 
algorithm. 

II. FACE RECONSTRUCTION 
Basically, the proposed face reconstruction framework 

includes several parts, which are facial feature detection, 
3D modeling, pose estimation, and texture map rebuilding. 
Firstly, Haar-like feature based object detection [10] was 
adopted to detect frontal or profile human face from input 
image, followed by active appearance model (AAM) [11] 
which locates detailed facial features. After that, a generic 
3D face model including 3D mesh, texture-map and 
texture coordinates was used to render the reconstructed 
3D face. Next, based on the 2D image coordinates of 
detected facial features and their corresponding 3D 
coordinates in the 3D mesh, the head pose of the face in 
the input image and the associated projection matrix of this 
pose can then be estimated. Finally, texture patches were 
extracted from input image and mapped accordingly onto 
the texture-map. After some post-processing on this 
texture-map, it was then used to render the reconstructed 
3D face. Details of each step will be discussed in the 
following subsections: 

A. Facial Feature Detection 
The very first step of this framework is to detect and 

classify the input human face as frontal, half-profile or 
profile face. A popular face detector [10], a cascade of 
boosted classifiers working with Haar-like features, is 
adopted. It should be noted that we need two detectors 
here, one for frontal face, and the other for profile face. 
Typically profile face detector can only detect face towards 
one direction, and face to another direction can be detected 
by simply flipping input image horizontally. Without loss 
of generality, we assume all the profile faces are oriented 
towards the left side. 

Fig.1. Examples from the training sets for AAM. 

Then, by using the AAM algorithm [11] we can match 
the pre-trained face appearance model to the input image 
and locate the detailed facial features. Similar to the 
method in [12], we use three distinct appearance models, 
which are frontal, half-profile and profile. The training set 
consists of labeled images, where key landmark points are 
manually marked on each example face. Figure 1 shows 
examples of the labeled images used in our training set. 

The idea of AAM search is to minimize the difference 
between an input image and the one synthesized by the 
appearance model. The difference could be defined as the 
magnitude of difference vector: 

2
mi III −=Δ     (1) 

where Ii is the vector of grey-level values in the image, and 
Im is the vector of grey-level values for the current model 
parameters. Individual models are then applied to match 
the input face image and search for the best fit. The one 
with minimum value of IΔ  is adopted for locating the 
facial features. AAM algorithm includes an initialization 
procedure and a search procedure. Since Haar-feature face 
detector is faster than AAM initialization, it will be more 
efficient to use result of Haar-feature face detector as input 
of AAM algorithm to reduce the dynamic range of the 
subsequent search space. 

B. Three-dimension face modeling 
According to some existing works [13-15], a 3D face 

was normally represented by a shape-vector S and a 
texture-vector T, where shape-vector contains 3D 
coordinates and texture-vector contains the R, G, B color 
values of all the vertices. In these approaches, large 
number of vertices (approximately 70,000 vertices in [13]) 
are usually required to achieve a reasonably good high 
resolution appearance due to the limitation that there is 
only one color value per vertex. 

Fig. 2. 3D face model. (a) 3D mesh, (b) Skin texture map, (c) 
Texture coordinates map, (d) Texture rendered. 

In contrast, in this proposed framework, we employ 
texture mapping technology instead, where detailed texture 
could be rendered on a 3D shape with substantially fewer 
vertices. To illustrate the effectiveness of the framework, 
the face model we employed in this paper comes from a 
3D mesh with less than one-tenth of the vertexes (6292 
vertices and 6152 facets) of the mesh employed in [13]. 
The face model, as well as the texture maps and texture 
coordinates are depicted in Figure 2(a)-(c). In essence, 
texture map is a 2D image which contains all the texture of 
a human face and texture coordinates determine how the 
texture is mapped from the 2D texture map onto the final 
3D mesh shown in Figure 2(d). It should be noted that this 
face model is derived from FaceGen (a software product of 
Singular Inversions Inc.), where the 3D mesh contains 
several objects including skin, eyes, sock, teeth and 
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tongue, which is useful for morphing 3D face into a variety 
of face expressions. Texture map of skin is shown in 
Figure 2(b), and other texture maps are omitted here. In 
our work, the texture maps of skin and eyes will be rebuilt 
according to the input image, while default texture maps 
will be employed for the rest. 

It is well known that 3D face reconstruction includes 
shape reconstruction and texture reconstruction. This paper 
focused on the latter, and therefore a single mean shape 
was adopted in this work. However, 3D face geometry 
reconstruction algorithm in [15] could be utilized to get a 
personalized 3D shape if required. Detected facial features 
in Section 2.1 could be utilized for 2D face alignment then. 

C. Pose estimation 
In order to extract texture of input image for filling 

patches in the 3D mesh, coordinates of each mesh points 
has to be projected onto the input image. Therefore we 
need to estimate the pose of the 3D face to align the mesh 
points properly with the 2D face in the input image. 
Fortunately, by using 2D coordinates of facial features 
detected by AAM in the input image and their 
corresponding 3D coordinates in 3D mesh as hints, the 
transformation matrix for this projection can be deduced as 
follows: 

Let Q=(XQ, YQ, ZQ) be an arbitrary point in 3D, let 
q=(xq, yq) be the corresponding 2D image coordinates of 
Q. A forward mapping function, Φ, which defines the 
transform function from a point in 3D coordinates to a 
point in the 2D image coordinates is given as, { }Qq Φ= . 

By perspective transformation, we have 
[ ] [ ] T⋅= 11 QQQqqq ZYXzyx  , (2) 

where T is the transformation matrix. Then we assume 
that sub-matrix T1 is the first two column of T, we have 

[ ] [ ] 1T⋅= 1QQQqq ZYXyx  . (3) 

Fig. 3. (a) Feature points on 3D mesh, (b) Feature points in 2D 
input image, (c) Fit 3D mesh into 2D image. 

 
Among all the detected facial features, we pick some 

for pose estimation, e.g. eye corners, mouth corners, ear 
tips and nose tip, as shown in Figure 3 (a)-(b). Note that 
our framework is less tightly coupled to the 3D model 
employed, in the sense that virtually any 3D face model 
can be employed as long as there exists a direct 
correspondence between key facial feature points and 
those in the mesh.  Assume m feature points are utilized, 
we have 

1T⋅
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Then T1 can be calculated as 
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where [ ] 1－⋅  represent Moore-Penrose pseudo inverse. The 
matrix thus obtained is actually a least square solution of 
the mesh fitting problem. With this matrix, projection of 
every vertex of 3D mesh onto the input image could be 
calculated by Eqt.(3), which enables us to rebuild the 
texture map. 

D. Texture map rebuilding 
After pose estimation, texture map could be rebuilt by 

filling each texture element with those extracted from the 
input image. It should be noted that only the central region 
of texture map, which includes every feature of human 
face, is needed to be rebuilt. Coordinates of mesh in central 
face projected on the input image are calculated and 
marked as shown in Figure 3(c), where every patch has a 
correspondence in the texture coordinates map. For an 
individual patch of mesh, we just map the texture of this 
patch in the input image into the corresponding patch in 
the texture map. Since this mapping is from 2D image to 
2D image, affine transform could be utilized for 
interpolation. Affine transform is determined by the 
coordinates of all vertices of this patch in the two images, 
and the transformation and the filling procedure are 
illustrated in Figure 4(a). 

Fig. 4. Diagram of rebuilding skin texture map. (a) Transform 
and filling. (b) Post processing. 

 
Central region of texture map (called face region) is 

filled with the texture that comes from the input image, 
while the other parts of it (called non-face regions) are 
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filled with default texture. A post processing is performed 
to smooth out the transition values between these two 
regions for better 3D face reconstruction results. First, 
color of non-face region is modified to that of the color 
tune of the face region. Then boundary of two regions is 
blurred to smooth out the color transition from one region 
to the other. On the other hand, for non-frontal face, the 
texture of the occluded face region cannot be reconstructed 
well as they are not visible in the 2D input image. 
Therefore, the post processing step also includes a 
symmetrization process to fill visible texture into occluded 
region and to make the texture map laterally symmetric. 
These post processing steps are illustrated in Figure 4(b). 

It was mentioned before that our face model includes 
several objects and texture maps. The above process 
illustrates how skin texture map can be rebuilt. It should be 
noted that eyes texture map could also be rebuilt in a 
similar fashion. 

III. SUPER-RESOLUTION SCHEME 
The above face texture mapping process transformed 

input human face images, which could have various poses, 
into unified texture maps. And by this texture map, every 
pixel at the face on distinct input images was corresponded. 
Upon closer inspection, this reconstruction process is 
actually functionally similar to the registration in SR 
processing. Suppose that we have several LR image frames 
of same person. By texture mapping, we can rebuild LR 
texture map for each of them. HR texture map can be 
achieved by fusing LR texture maps of each LR frame. 
Average filter (AF),  a simple end efficient fusion method 
which is also utilized by many SR algorithms [1, 16], is 
one of the strategy we adopted here. By using this HR 
texture map, we can therefore render SR face images with 
various poses.  

Another SR strategy is to perform fusion process 
before rebuilding texture map. Revisiting how pixels of 
input image were filled into texture map as described in 
section 2.4: Firstly, each pixel of input image was mapped 
into texture map with sub-pixel level. Then scattered data 
interpolation method was applied to get grid data, nearest 
neighbor (NN) and triangulation based linear interpolation 
(TBLI) were two possible options. 

With multiple input images, severalfold scattered 
points exist on texture map, which naturally could be 
utilized to rebuild a HR texture map. In our research, a 
weighted average of nearest neighbors with median filter 
(WANNM) was adopted instead of NN method. For each 
grid pixel P0 in texture map, find the nearest five scattered 
sub-pixel points of it, and then eliminate two points whose 
color are the farthest away from the mean color of those 
five points, and finally calculate color of it by weighted 
average color of remained three points (P1 to P3) as 
following: 
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where, C0 is color of grid pixel in texture map,  Ci is color 
of scattered sub-pixel points (i=1,2,3), and di is distance 

from scattered sub-pixel point Pi to the grid pixel P0. 
Performance of AF, NN, TBLI and WANNM will be 
discussed in experiment section. 

IV. EXPERIMENTS AND DISCUSSION 
GTAV face database [17] is adopted in our 

experiments to serve as a common reference for 
performance evaluation. Furthermore, a USB web camera 
is utilized for capturing more face images for testing the 
robustness of the framework in reconstructing faces from a 
complex background. Input images were all normalized to 
a size of 512×512, and the typical processing time are 1~2 
seconds, which varies according to the size of the face in 
the image. Among all the several steps of the proposed 
framework, facial feature detection consumes most of 
time. 

Some single frame reconstruction results are 
demonstrated in Figure 5, where the reconstructed frontal 
view results are shown in Figure 5(b), and Figure 5(c) 
shows synthetic faces with various poses. When the face in 
the input image is a non-frontal view (first three rows in 
Figure 5), symmetrization processing will be performed, 
which will be determined automatically according to 
which active appearance model is adopted. 

Fig. 5. Reconstruction results. (a) Original image, (b) Synthetic 
results of frontal view, (c) Synthetic results of various poses. 

The SR experiment results were illustrated in Figure 6, 
and area of mouth and nose was enlarged for a more clear 
illustration. Four reconstructed LR faces were shown in 
Figure 6(a)-(d), and the SR results produced by average 
filter, TBLI and WANNM were shown in Figure 6(e)-(g) 
respectively. Texture in Figure 6(a)-(d) looks quite coarse, 
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due to few scattered points exist in LR texture map, and 
pixels in a small block have same color since they have 
same nearest neighbor. By average fusing all four LR 
texture map, results in Figure 6(e) looks smooth and there 
is no obvious block in it. However, similar to Gaussian 
smooth, result of average fusion looks a little bit blur on 
edges and loses some high frequency information. It 
should be noted that although all face on LR frame was 
coming from same person, they were captured at different 
time instants. Therefore environment color and luminance 
of them could be different, and the colors of scattered 
points mapped into texture map, which belong to distinct 
LR frames, could be inconsistent. If we use SR algorithm 
like NN or TBLI directly, there will be stripes on rendered 
HR results, which is illustrated in Figure 6(f). By using 
median filter to eliminated some erratic points, and 
averaging color of neighbor points with reciprocal of 
distance as weight, proposed WANNM algorithm produce 
HR results with smooth surface as well as sharp edges as 
shown in Figure 6(g). 

Fig. 6. Super-Resolution results. (a)-(d) Recon-structed results 
from LR frames, (e) SR results by averaging filter, (f) SR results 
by TBLI, (g) SR results by WANNM algorithm. 

In conclusion, experimental results demonstrate that 
input faces with distinct poses can be synthesized into a 
unified texture map for the rendering of a realistic frontal 
face. SR algorithms could be applied on registered texture 
map directly, and produce convincible HR results. In our 
future works, we expect to apply the above proposed 
framework on video, to reconstruct HR 3D faces from 
multiple video frames, and to evaluate how frontal face 
reconstruction and SR algorithms could help to improve 
the accuracy in face recognition. 
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