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abstract

 

In contrast to fast inactivation, the molecular basis of sodium (Na) channel slow inactivation is
poorly understood. It has been suggested that structural rearrangements in the outer pore mediate slow inactiva-
tion of Na channels similar to C-type inactivation in potassium (K) channels. We probed the role of the outer ring
of charge in inactivation gating by paired cysteine mutagenesis in the rat skeletal muscle Na channel (rNav1.4).
The outer charged ring residues were substituted with cysteine, paired with cysteine mutants at other positions in
the external pore, and coexpressed with rat brain 

 

�

 

1

 

 in 

 

Xenopus

 

 oocytes. Dithiolthreitol (DTT) markedly increased
the current in E403C

 

�

 

E758C double mutant, indicating the spontaneous formation of a disulfide bond and prox-
imity of the 

 

�

 

 carbons of these residues of no more than 7 Å. The redox catalyst Cu(II) (1,10-phenanthroline)

 

3

 

(Cu(phe)

 

3

 

) reduced the peak current of double mutants (E403C

 

�

 

E758C, E403C

 

�

 

D1241C, E403C

 

�

 

D1532C, and
D1241C

 

�

 

D1532C) at a rate proportional to the stimulation frequency. Voltage protocols that favored occupancy
of slow inactivation states completely prevented Cu(phe)

 

3

 

 modification of outer charged ring paired mutants
E403C

 

�

 

E758C, E403C

 

�

 

D1241C, and E403C

 

�

 

D1532C. In contrast, voltage protocols that favored slow inactiva-
tion did not prevent Cu(phe)

 

3

 

 modification of other double mutants such as E403C

 

�

 

W756C, E403C

 

�

 

W1239C,
and E403C

 

�

 

W1531C. Our data suggest that slow inactivation of the Na channel is associated with a structural rear-
rangement of the outer ring of charge.
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I N T R O D U C T I O N

 

The voltage-gated Na channel mediates the rapid up-
stroke of action potential and is responsible for excita-
tion and conduction in nerve and muscle. Upon depo-
larization, the channel activates a process that involves
outward movement of all four charged S4 segments
(Stuhmer et al., 1989; Hirschberg et al., 1995; Yang and
Horn, 1995; Yang et al., 1996; Kontis et al., 1997). Na
channel opening is transient, with inactivation rapidly
ensuing. Na channels undergo several different kineti-
cally distinct forms of inactivation. The time constants
of recovery from inactivated states range from millisec-
onds (fast inactivation) to hundreds of milliseconds
(intermediate inactivation) and seconds (slow inactiva-
tion) (Simoncini and Stuhmer, 1987; Ruff et al., 1988;
Nuss et al., 1996; Kambouris et al., 1998).

In 

 

Shaker

 

 K channels, N-type inactivation is mediated
by an intracellular region at the NH

 

2

 

 terminus acting as
“ball” occluding the pore (Hoshi et al., 1990). The
analogous region in the Na channel is the cytoplasmic
III-IV linker, which serves as a tethered pore blocker
binding to an inactivation gate receptor in the intracel-
lular mouth of the channel (Armstrong, 1981; Stuhmer

et al., 1989; Vassilev et al., 1989; Patton et al., 1992;
West et al., 1992). Unlike fast inactivation, the molecu-
lar basis of slow inactivation in Na channels is poorly
understood. However, slow inactivation plays a critical
role in membrane excitability and firing properties by
governing the availability of Na channels in neurons
and muscle (Ruff et al., 1988; Fleidervish et al., 1996).
The physiological significance of slow inactivation in
Na channels has been established by studies demon-
strating that abnormalities of slow inactivation are asso-
ciated with a variety of human diseases, including hy-
perkalemic periodic paralysis (Cummins and Sigworth,
1996; Hayward et al., 1999; Bendahhou et al., 2002),
Brugada syndrome (Veldkamp et al., 2000), and epi-
lepsy (Alekov et al., 2001; Spampanato et al., 2001).

In 

 

Shaker

 

 K channels, C-type inactivation, which can
be slow, is a mechanism of inactivation that involves
a conformational rearrangement of the outer pore.
C-type inactivation persists when N-type inactivation is de-
leted (Hoshi et al., 1991), is inhibited by extracellular
tetraethylammonium (Choi et al., 1991) and is sensitive
to extracellular [K

 

�

 

] and mutations in the outer pore
(Lopez-Barneo et al., 1993).

The outer ring of charge (E403, E758, D1241, and
D1532 in domains I-IV, respectively) is located three
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to four residues external to the putative selectivity fil-
ter (D400, E755, K1237, and A1529) of the Na chan-
nel (Heinemann et al., 1992). Whether the conserved
outer ring of charge in the external pore of the Na
channel is involved in slow inactivation is not well de-
fined, although charge neutralization of one residue
(E403) in this ring markedly delays recovery from
slow forms of inactivation (Zhang et al., 2003). We hy-
pothesized that slow inactivation in the Na channel is
associated with a structural rearrangement of this
outer ring of charge. This rearrangement changes the
relationship of side chains of residues that comprise
the outer pore of Na channels, including those in the
outer ring of charge. In the present study, we intro-
duced pairs of cysteines into the outer ring of charge
(EEDD) and other pore residues in each of the do-
mains of rNav1.4 (Fig. 1). Paired-cysteine substitu-
tions in the outer pore of Na channels can form disul-
fide bonds both spontaneously and in the presence of
a redox catalyst (Benitah et al., 1996, 1997, 1999). The
combination of paired-cysteine mutagenesis and disul-
fide trapping was employed to explore the changes in
spatial relationships of residues in the outer pore that
may participate in slow inactivation. We determined
the conformation-dependent rate of disulfide bond
formation in the paired-cysteine mutants and investi-
gated the effects of the induction of slow inactivation
on the extent of disulfide bond formation. Our results

suggest that motion in the outer ring of charge is
closely associated with slow inactivation gating of the
Na channel.

 

M A T E R I A L S  A N D  M E T H O D S

 

Mutagenesis and Channel Expression

 

A 1.9Kb BamHI-SphI or 2.5kb SphI-KpnI fragment of the 

 

�

 

1

 

skeletal muscle Na channel (rNav1.4 channel) cDNA (Trimmer
et al., 1989) was subcloned into pGEM-11Zf

 

�

 

 and pGEM-7Zf

 

�

 

(Promega), respectively. The 1.9- and 2.5-kb cassettes were em-
ployed for oligonucleotide-directed mutagenesis in domains I
or II–IV, respectively (Kunkel, 1985). Mutations were confirmed
by sequencing mutagenic cassettes, which were cloned backed
into pSP64T (Krieg and Melton, 1984). Complementary RNA
was prepared via in vitro transcription using SP6 RNA polymerase.
The 

 

�

 

 subunit was coexpressed with the rat brain 

 

�

 

1

 

 subunit (1:1
weight ratio) (Isom et al., 1992) in 

 

Xenopus

 

 

 

laevis

 

 oocytes as de-
scribed previously (Tomaselli et al., 1995; Perez-Garcia et al.,
1996; Benitah et al., 1997). Oocytes were stored in the following
solution (in mM): NaCl 96, KCl 2, MgCl

 

2

 

 1, CaCl

 

2

 

 1.8, HEPES 5,
Na Pyruvate 5, theophylline 0.5, supplemented with penicillin
100 U/ml and streptomycin 100 

 

�

 

g/ml (pH 7.6 with NaOH).

 

Electrophysiology and Data Analysis

 

Macroscopic Na currents were recorded 24–48 h after injection
of cRNA using a two-microelectrode voltage-clamp (OC-725B;
Warner Instrument Corp.) in frog Ringer’s solution containing
(in mM): NaCl 96, KCl 2, MgCl

 

2

 

 1, HEPES 5 (pH 7.6 with
NaOH). All experiments were performed at room temperature.
The stock solution of the redox catalyst Cu (II) (1,10-phenan-

Figure 1. Schematic depiction of the
Na channel � subunit. It consists of four
domains, each of which has six trans-
membrane segments. The S4 segments
represent at least part of the voltage
sensor. The segments between S5 and
S6 (P-segments) line the outer pore.
The outer ring of negative charge
(E403, E758, D1241, and D1532) is il-
lustrated in filled circles. The open cir-
cles represent the putative selectivity fil-
ter residues (D400, E755, K1237, and
A1529). The domain III-IV linker un-
derlies fast inactivation. The 13 double
cysteine mutants studied are shown be-
low the schematic. E403C, E758C, and
D1241C (enclosed in the boxes) were
paired with other cysteine mutants in
different domains of the outer pore.
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throline) (Cu(phe)

 

3

 

) was a mixture of 150 mM Cu(II)SO

 

4

 

 and
500 mM 1,10-phenanthroline in a 4:1 water/ethanol solution
(Careaga and Falke, 1992) and was diluted to its final concentra-
tion just before use. Dithiothreitol (DTT) was dissolved in extra-
cellular solution just before use. Acquisition and analysis of
whole-cell currents was performed with custom-written software.
Current-voltage relationships were fitted to a transform of the
Boltzmann distribution:

where 

 

V

 

rev

 

 is the reversal potential, 

 

G

 

max

 

 the maximum normal-
ized conductance, 

 

V

 

1/2 

 

the potential of half activation, and 

 

k

 

 the
slope factor. Average data are expressed as mean 

 

�

 

 SEM. Statisti-
cal significance was evaluated by ANOVA or Student’s 

 

t

 

 test (Ori-
gin; MicroCal) with P 

 

�

 

 0.05 representing significance.

 

R E S U L T S

 

Disulfide Bonding of Paired Cysteine Substitution Mutants

 

Fig. 1 shows a schematic depiction of rNav1.4 with the
residues of the selectivity filter and the outer ring of
charge highlighted. Amino acids in the outer ring of
charge (E403, E758, D1241, and D1532) in the ascend-
ing limb of the P-segment (SS2 region) were substi-
tuted singly with cysteine and paired with other cys-
teine substitutions in the external pore. 13 paired
cysteine substitution mutants (Fig. 1, bottom) were
studied and exhibited distinct phenotypes. For exam-

I Imax⁄ V Vrev–( )Gmax 1 V1 2⁄ V–( )exp+ k⁄[ ],⁄=

 

ple, Fig. 2 A shows the Na currents elicited by a voltage
step from 

 

�

 

100 to 

 

�

 

20 mV through E403C

 

�

 

E758C
mutant channels. The magnitude of the Na current was
markedly increased after a 1–1.5 min exposure to the
reducing agent DTT (1 mM) (Fig. 2 A). The mean data
shows that the peak Na current at 

 

�

 

20 mV more than
doubled in the presence of DTT and the increase was
observed over a wide range of voltages (

 

n

 

 

 

	 

 

8, P 

 

�

 

0.01) (Fig. 2 B). The enhancement of Na currents
upon exposure to DTT suggests that a disulfide bond
forms spontaneously between the cysteines at the 403
and 758 positions, cross-linking the pore-lining (P) seg-
ments of domains I and II, and partially occluding the
pore. DTT did not increase the magnitude of the basal
current of any of the other paired mutants examined in
this study.

The redox catalyst Cu(phe)

 

3

 

 facilitates disulfide
bond formation in paired cysteine mutant channels,
but at concentrations of 100 

 

�

 

M or less has no effect on
either the wild-type Na channel or single-cysteine pore
mutant channels (Benitah et al., 1997, 1999). Disulfide
bond formation was also induced by Cu(phe)

 

3

 

 in
E403C

 

�

 

E758C mutant channels. The modification by
Cu(phe)

 

3

 

 was irreversible during washout (Fig. 2 C).
However, the application of DTT, at least partially, re-
stored the Na current through E403C

 

�

 

E758C mutant
channels (Fig. 2 D).

Figure 2. Evidence for disulfide
bonding of residues in the outer ring of
charge. (A) Representative traces show
that current through E403C�E758C
mutant Na channels increased more
than twofold in magnitude in the pres-
ence of 1mM DTT. (B) The current-
voltage relationship shows a similar in-
crease in peak current amplitude of the
double mutant by exposure to DTT
over the entire voltage range (P � 0.01,
n 	 8). Peak currents measured at each
voltage step were normalized to the
maximum current observed in each
cell, averaged and plotted as a function
of voltage. (C) A plot of the time course
of the decrease in peak current am-
plitude upon exposure to 100 �M
Cu(phe)3. The effects of Cu(phe)3 were
not reversed during washout. The inset
shows currents recorded at time (a) and
(b). (D) A plot of the peak Na cur-
rent amplitude during application of
Cu(phe)3, washout, and subsequent
treatment with 1 mM DTT.
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Conformation-dependent Rate of Catalyzed
Disulfide Bond Formation

 

We used different voltage protocols to examine the
conformation-dependent rate of disulfide bond forma-
tion of the paired cysteine mutants. The rates of modi-
fication of paired mutants were determined using de-
polarizing test pulses to 

 

�

 

20 mV for 50 ms from a hold-
ing potential of 

 

�

 

100 mV at stimulation frequencies of
1 Hz or 0.033 Hz in the presence of Cu(phe)

 

3

 

. Using
this protocol at 1 Hz, voltages that favored the activated
and fast inactivated states (

 

�

 

20 mV) occupied 4.76%
duty cycle, compared with only 0.17% of the duty cycle
at 0.033 Hz. At test pulse durations of 50 ms very little
slow inactivation was recruited in the wild-type or any of
the paired mutant channels. The rates of disulfide
bond formation were indexed by the peak current re-
duction curves and the time constants were deter-
mined by single exponential fits to the plots of current
reduction (Fig. 3, A and B). A plot of the time con-
stants of the modification rates demonstrates that cys-
teine substitutions of the outer ring of charge residues
exhibit specific patterns of frequency-dependent di-
sulfide bond formation when combined with other
P-segment cysteine substitutions (Fig. 3 C). Paired cys-
teine substitutions of outer charged ring residues in
domains I and II (E403C

 

�

 

E758C), I and III (E403C

 

�

 

D1241C), I and IV (E403C

 

�

 

D1532C), and III and IV
(D1241C

 

�

 

D1532C) exhibited significantly faster rates
of catalyzed disulfide bond formation at 1 Hz com-
pared with 0.033 Hz stimulation frequencies (Fig. 3, A
and C). Similarly, the other paired outer charged ring
mutant (II

 

�

 

IV E758C

 

�

 

D1532C) exhibited a more
rapid rate of modification with 1 Hz stimulation fre-
quency compared with 0.033Hz, but this difference did
not reach statistical significance (Fig. 3 C). The pairing
of charge ring mutants with other cysteine mutations in
the P-segments, but not in the outer charged ring, gen-
erally produced double mutants with rapid Cu(phe)

 

3

 

-
induced disulfide bond formation insensitive to the
stimulation frequency (Fig. 3, B and C). The excep-
tions were when E403C was combined with M1240C (in

 

F

 

igure

 

 3. Rate-dependent modification by Cu(phe)

 

3

 

 in paired
mutant channels. (A) Rate-dependent modification by Cu(phe)

 

3

 

of E403C

 

�

 

E758C mutant channels. Increasing stimulation fre-
quency (from 0.033 Hz to 1 Hz) enhanced the rate of current re-

duction of E403C

 

�

 

E758C, suggesting rate-dependent modifica-
tion of Cu(phe)

 

3

 

 in E403C

 

�

 

E758C mutant channels. The inset
shows representative currents at 2 min (a) and 12.5 min at stimula-
tion frequencies of 1 Hz (b) and 0.033 Hz (c) after the application
of Cu(phe)

 

3

 

. (B) In contrast, current reduction was rapid and not
dependent on stimulation frequency in the E403C

 

�

 

W1239C mu-
tant channels. (C) Plots of the rates of reduction in peak current
amplitude at different stimulation frequencies in the presence of
Cu(phe)

 

3

 

 (

 

n

 

 

 

	 

 

2–7). Single exponential fits of the form y 

 

	

 

 

 

Ae

 

(

 

�

 

t

 

/

 




 

)

 

to plots like those shown in A and B were used to determine the
time constants, 

 




 

. 

 

A

 

 is the amplitude. The top panel shows the time
constants of current decay of mutant channels that were signifi-
cantly increased at slower stimulation frequencies. The bottom
panel is a plot of the time constants of double mutant channels
that did not exhibit stimulation frequency dependent rates of
modification. (*P 

 

� 

 

0.05, **P 

 

� 

 

0.01).



T
he

 J
ou

rn
al

 o
f 

G
en

er
al

 P
hy

si
ol

og
y

 

327

 

Xiong et al.

 

Cu(phe)3. Fig. 4 B shows that the recovery of the Na
current was �90% complete by 1 min of washout in-
dependent of the presence of Cu(phe)3. Similarly,
E403C�E758C mutant channels exhibited complete
recovery from slow inactivation, which was induced by
holding the channels at �20 mV and pulsing to 0 mV
at a frequency of 1 Hz before and during exposure to
Cu(phe)3 (Fig. 4 C). Slow inactivated E403C�E758C
mutant channels recovered with a similar time course
independent of prior exposure to Cu(phe)3 (P �
0.05) (Fig. 4, B and C). These results demonstrate
that slow inactivation in E403C�E758C mutant chan-
nels can completely prevent the formation of a disul-
fide bond between the cysteines at the 403 and 758
positions in the presence of Cu(phe)3. In contrast,
there was no significant recovery of the Na current
through E403C�W1531C mutant channels in the
presence of Cu(phe)3 (Fig. 4 D).

The induction of slow inactivation prevented cata-
lyzed disulfide bond formation in specific patterns with
paired mutants in the outer pore of the channel. When
the domain I outer-charged ring mutant E403C was
combined with a mutation in any one of the charge res-
idue positions in the other domains (domain II E758C,
domain III D1241C, and domain IV D1532C), disul-
fide bond formation was prevented by voltage pro-
tocols that populated slow inactivated states (Fig. 5).
In contrast, the pairing of E403C with other cys-
teine mutations in the P-segments generated double
mutants (e.g., E403C�W756C, E403C�W1239C, and
E403C�W1531C) that were not protected from modifi-
cation by Cu(phe)3 during slow inactivation. Inter-
estingly, slow inactivation in other paired mutants
in the outer ring (III�IV D1241C�D1532C, II�IV
E758C�D1532C) provided less protection from Cu
(phe)3-induced disulfide bond formation compared
with the mutants containing E403C (Fig. 5). However,
slow inactivation does not appear to render the E403C
side chain completely inaccessible, since it remains
able to form disulfide bonds with other cysteine substi-
tutions in the pore (W1531C and possibly W1239C and
W756C).

Interestingly, E403C�K1237C Na currents were also
protected from Cu(phe)3-induced disulfide bond for-
mation (83%) by slow inactivation. These results, along
with the findings that charge-altering mutations at resi-
due K1237 favor slow forms of inactivation (Todt et al.,
1999), suggest a role for K1237 in slow inactivation.
With the exception of E403C�K1237C mutant, double
mutants that have more protection (i.e., 60% or more)
from catalyzed modification in slow inactivated states
(Fig. 5) also exhibit significant differences in the modi-
fication rate at different stimulation frequencies from
the �100 mV holding potential (Fig. 3). These findings
suggest that in these mutant channels that exhibit a
high degree of flexibility of P-segments during gating,

T A B L E  I

Extent of Current Recovery

Mutant Extent of current recovery

Protocol A 
(1 Hz)

Cu(phe)3

Protocol B
(0.033 Hz)
Cu(phe)3

Protocol C
(slow inact)

Control

Protocol C
(slow inact)
Cu(phe)3

% % % %

E403C�E758C 0.16 � 0.03 0.14 � 0.02 96.55 � 0.55 88.64 � 5.09 

E403C�D1241C 0.18 � 0.04 0.16 � 0.02 93.14 � 3.34 81.01 � 6.26

E403C�D1532C 0.15 � 0.02 0.18 � 0.04 97.28 � 2.72 94.43 � 2.27

E403C�M1240C 0.14 � 0.03 0.12 � 0.03 93.88 � 4.30 84.95 � 8.54

E403C�K1237C 0.12 � 0.03 0.15 � 0.03 97.94 � 2.73 83.21 � 3.31

D1241C�D1532C 0.15 � 0.02 0.13 � 0.02 97.33 � 1.67 60.69 � 1.38

E758C�K1237C 0.14 � 0.02 0.13 � 0.03 98.02 � 0.91 57.75 � 9.76

E403C�G1530C 0.16 � 0.02 0.19 � 0.04 95.13 � 1.15 47.22 � 1.56

E403C�W756C 0.13 � 0.02 0.15 � 0.03 96.02 � 2.80 40.04 � 3.85

E403C�W1239C 0.19 � 0.04 0.16 � 0.02 96.13 � 3.87 37.52 � 4.85

E758C�D1532C 0.17 � 0.03 0.15 � 0.02 94.02 � 2.80 33.02 � 3.15

E403C�W1531C 0.15 � 0.02 0.17 � 0.02 97.91 � 1.10 10.16 � 6.40

E758C�W1531C 0.12 � 0.03 0.15 � 0.03 98.13 � 0.76 1.76 � 1.41

(Protocols A and B) Depolarizing test pulses to �20 mV for 50 ms from a
holding potential of �100 mV at stimulation frequencies of 1 Hz or 0.033
Hz, respectively (n 	 2–7 cells). (Protocol C) Slow inactivation was
induced by voltage clamping cells at �20 mV and then repolarizing to
�100 mV for 10 ms every 5 s (Fig. 4 A). Recovery at �100 mV was measured
by voltage steps to �20 mV for 50 ms at 1 Hz after washout of Cu(phe)3

(n 	 3–6 cells).

domain III) and G1530C (in domain IV) (Fig. 3 C). In
all the paired mutant channels examined, the modifi-
cation by Cu(phe)3 was irreversible in the absence of
a reducing agent (Table I), consistent with disulfide
bond formation (Benitah et al., 1997, 1999).

Slow Inactivation and Cu(phe)3-induced
Disulfide Bond Formation

We used two different protocols to induce slow inacti-
vation in the presence and absence of Cu(phe)3 to in-
vestigate the effect of conformational changes of the
outer pore associated with slow inactivation on the ex-
tent of disulfide bond formation. Slowly recovering in-
activated states were populated by holding the cells at
�20 mV and then repolarizing to �100 mV for 10 ms
every 5 s. The brief repolarization permitted recovery
from fast inactivation and monitoring of the residual
peak current amplitude. Cu(phe)3 was washed out for
4 min before returning the channels to a holding po-
tential of �100 mV. The recovery component after
washout represented channels that had slow inacti-
vated but had not undergone catalyzed disulfide bond
formation. Fig. 4 A shows that the rate of development
of slow inactivation of E403C�E758C mutant chan-
nels was not significantly different in the presence and
absence of Cu(phe)3. The reduction of current was
largely attributed to cumulative slow inactivation,
rather than induced disulfide bond formation by
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neither closed state nor slow inactivated states favor cat-
alyzed disulfide bond formation (Fig. 6).

In summary, the side chains of amino acid residues in
the outer ring of charge of the voltage-gated Na chan-
nel (especially other outer ring mutants paired with
E403C) undergo unique motions in slow inactivation
that prevents Cu(phe)3-induced modification (Fig. 5).

D I S C U S S I O N

Slow inactivation is a collection of distinct gating pro-
cesses. However, the molecular determinants of slow in-
activation remain unknown. Site-directed mutagenesis
suggests that residues in the S4 (Mitrovic et al., 2000),
S4-S5 linkers (Bendahhou et al., 2002), S5 (Bendahhou
et al., 1999), and S6 segments (Hayward et al., 1997;
Wang and Wang, 1997) may play a role in slow inactiva-
tion. Moreover, several lines of evidence have sup-
ported a role for the outer pore in slow inactivation.
First, mutations in the P-segments disrupt slow inactiva-
tion in Na channels (Tomaselli et al., 1995; Balser et al.,
1996; Kambouris et al., 1998; Todt et al., 1999; Ong et
al., 2000; Hilber et al., 2001, 2002; Vilin et al., 2001;

Zhang et al., 2003). Second, alkali metal cations ap-
plied to the external surface inhibit slow inactivation
(Townsend and Horn, 1997), similar to observations
for C-type inactivation in Shaker K channels (Pardo et
al., 1992; Lopez-Barneo et al., 1993; Baukrowitz and
Yellen, 1995). Third, residues in the outer pore of Na
channels may underlie isoform-specific differences in
slow inactivation (Vilin et al., 2001).

In the K channel, C-type inactivation is clearly associ-
ated with constriction of the outer mouth of the pore
(Liu et al., 1996). In the Na channel, whether a similar
constriction of the outer pore occurs is not certain.
Townsend and Horn showed that increasing the extra-
cellular Na� concentration inhibits slow inactivation,
suggesting that binding of Na� to a site near the outer
mouth of the pore inhibits closing of the slow inactiva-
tion gate (Townsend and Horn, 1997). On the other
hand, gating- and conformation-independent modifi-
cation of cysteine mutants in the outer pore by meth-
anethiosulfonate (MTS) reagents argues that the outer
pore remains largely unobstructed when slow inacti-
vated (Struyk and Cannon, 2002). However, in the lat-
ter study, only a limited number of cysteine mutations

Figure 4. Slow inactivation pre-
vented the modification of E403C�
E758C, but not E403C�W1531C mu-
tant channels by Cu(phe)3. (A). Slow
inactivation was induced by holding the
cells at �20 mV for 15 min with brief re-
polarizations to �100 mV for 10 ms to
elicit currents after recovery from fast
inactivation. The mean data shows that
channels entered slow-inactivated states
at approximately the same rate regard-
less the presence (filled circles) or ab-
sence (open circles) of Cu(phe)3. (B)
Upon washout, Na currents nearly com-
pletely recovered from slow inactivation
induced by the voltage protocol used in
A independent of prior exposure to
Cu(phe)3 (P � 0.05, n 	 6). The inset
shows representative currents before
(a) and 60 s after initiation of recovery
(b) with (filled circle) or without (open
circle) prior exposure to Cu(phe)3. (C)
A complementary voltage protocol was
employed to induce slow inactivation
before application of Cu(phe)3. Chan-
nels were held at �20 mV and pulsed
for 50 ms to 0 mV at 1 Hz for 30 min.
After 15 min of pulsing, Cu(phe)3 (100
�M) was applied for 15 min before
washout. The oocytes were voltage
clamped at �20 mV during the 4 min
washout, then they were stimulated at 1 Hz from a holding potential of �100 to �20 mV to elicit Na currents. The Na currents completely
recovered from slow inactivation compared with control (P � 0.05) (B). (D) After washout of Cu(phe)3, Na currents in E403C�W1531C
mutant channels did not significantly recover from slow inactivation induced by the voltage protocol used in A (P � 0.05, n 	 3).
E403C�W1239C mutant channels were also subjected to modification by Cu(phe)3 and recovered incompletely (P � 0.05, n 	 3).
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were informative and most of these were superficial in
the pore (Struyk and Cannon, 2002), thus a dynamic
constriction of the deeper reaches of the pore during
slow inactivation cannot be excluded. Indeed, we ob-
served reduced accessibility to the side chain of F1236C
to (2-aminoethyl)methanethiosulfonate (MTSEA) with
voltage protocols favoring slow inactivation (Ong et al.,
2000). Therefore, a structural rearrangement of the
outer pore is likely during slow inactivation of Na chan-
nels, although it is uncertain whether such a conforma-
tion change completely prevents ion flux.

The P-segments are asymmetrically organized in the
Na channel and each segment in domains I–IV makes a
unique contribution to the formation of the pore (Chi-
amvimonvat et al., 1996). Unexpected flexibility of
P-segments of Na channels allows disulfide formation
between the side chains of paired engineered cysteines
in P-segments of different domains (Benitah et al., 1997;
Tsushima et al., 1997). The unique ability of cysteine
mutants in domains I and II to form spontaneous disul-
fide bonds suggests that these two domains are in close
proximity (Benitah et al., 1997). The spontaneous or
catalyzed disulfide bonding of E403C and E758C in this
study is consistent with this close proximity of the do-
mains I and II P-segments and a separation of no more
than 7 Å between the � carbons.

The outer charged ring appears to exhibit a high de-
gree of flexibility during channel gating, consistent
with previous studies (Benitah et al., 1996, 1997, 1999;
Tsushima et al., 1997). Paired cysteine mutants in the
outer ring exhibited conformationally sensitive rates of
modification in the presence of a redox catalyst (Fig. 3
C). At the faster stimulation frequencies from a hold-
ing voltage of �100 mV, the channels spend a greater
proportion of time in the activated and fast inactivated
states compared with the closed state. The reactive
thiol side chains in paired mutant channels that exhib-
ited faster rates of modification at 1 Hz compared with
0.033 Hz stimulation frequencies may come into close
proximity during activation or fast inactivation. Nota-
bly, even those mutant channels, which did not exhibit
stimulation frequency–dependent differences in the
rate of disulfide bond formation, were rapidly modified
by Cu(phe)3 (Fig. 3 C). This is consistent with preferen-
tial modification of closed channels or nearly equal
rates of modification of closed and activated/fast inacti-
vated channels.

Figure 5. A bar plot of the percent recovery from slow inactiva-
tion elicited by the voltage protocol in Fig. 4 A. The percent recov-
eries of E403C�E758C, E403C�K1240C, E403C�D1241C, and
E403C�D1532C channels were not significantly changed in the
presence of Cu(phe)3 (P � 0.05, n 	 3–6). Significant Cu(phe)3-
induced modification of the other paired mutants occurred dur-
ing induction of slow inactivation (P � 0.05, n 	 3–4).

Figure 6. A schematic model showing
how gating influences the rate and ex-
tent of disulfide bond formation of
double mutants in the external pore
of the Na channel. In the case of
E403C�E758C, enhanced rates of cur-
rent reduction with higher stimulation
frequencies suggest that the activated
or fast inactivated states are modified
more readily than the rested state. In
contrast, double mutant channels such
as E403C�W1531C (Fig. 3 C) are rap-
idly modified at both slow and fast stim-
ulation rates, suggesting that the rested
state may be accessible to modifica-
tion by Cu(phe)3. Slow inactivation pro-
tects E403C�E758C channels (and
E403C�D1241C and E403C�D1532C
in the outer ring of charge) but not

E403C�W1531C from Cu(phe)3-induced modification. The results are consistent with a change in the conformation of the outer ring of
charge during slow inactivation of Na channels.
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W756C was previously shown to be insensitive to
bulky charged MTS reagents (Perez-Garcia et al.,
1996), but in this study E403C forms a disulfide bond
with W756C in the presence of Cu(phe)3. This appar-
ent discrepancy is not well understood. MTS agents
may modify W756C without a significant effect on the
current amplitude. Alternatively, the combination of
both mutations may alter the pore structure so that the
side chain of W756C is accessible for disulfide bond for-
mation.

Residues in the outer ring of charge are also involved
in the conformational changes in the channel pore
associated with slow inactivation. For example, Na
currents through E403C�E758C mutant channels
that were slow inactivated before the application of
Cu(phe)3 completely recovered (Fig. 4 C), suggesting
that slow inactivation protects the channels from modi-
fication by the redox catalyst. The structural rearrange-
ment in the outer pore during slow inactivation ap-
pears to alter the spatial relationships of the thiol side
chains of E403C (domain I) and E758C (domain II)
(Fig. 6). Similar protection was afforded to E403C�
D1241C (domain III) and E403C�D1532C (domain
IV) channels. An alternative explanation is the accessi-
bility of the redox catalyst to the outer ring of charge
changed with slow inactivation. It is possible that the re-
dox catalyst was excluded from the pore; however, this
would have to be a selective exclusion because some
double mutant channels involving residues deep in the
pore (e.g., E403C�W756C, E403C�W1531C, E758C�
W1531C, Fig. 5) were modified by Cu(phe)3. Fur-
thermore, the same paired cysteine mutants in the
outer ring of charge underwent catalyzed disulfide
bond formation by Cu(phe)3 when cells were pulsed
from a holding potential of �100 mV (Fig. 3). In any
case, slow inactivation appears to involve movements
of the P-segments and changes in the spatial relation-
ships of the side chains of the outer charged ring resi-
dues.

In addition to residues in the external charge ring,
two other cysteine mutants when combined with E403C
provided nearly complete protection from disulfide
bond formation when the channels were slow inacti-
vated. Na currents through E403C�K1237C mutant
channels exhibited comparable recovery from slow in-
activation independent of prior exposure to Cu(phe)3,
suggesting a role for K1237 in slow forms of inactiva-
tion. These data support the study by Todt et al. (1999)
that charge-altering mutations at position 1237 favor
occupancy of the ultra-slow inactivation state, similar to
C-type inactivation in shaker K channels. Slow inactiva-
tion also protected E403C�M1240C from oxidation;
however, M1240C undergoes extraordinarily slow mod-
ification by MTS agents that is independent of the
channel conformation (Struyk and Cannon, 2002). We

cannot exclude this as the cause of the redox insensitiv-
ity of this paired mutant channel.

The varying susceptibility of different outer ring dou-
ble mutants further highlights the asymmetry of the Na
channel pore (Chiamvimonvat et al., 1996; Perez-Gar-
cia et al., 1996). The S4 segment, half of a “voltage-sen-
sor paddle” (Jiang et al., 2003), may also play a signifi-
cant role in slow inactivation of the Na channel (Kontis
and Goldin, 1997; Mitrovic et al., 2000). It has been
proposed that if slow inactivation depends on the mo-
bility of S4 segments, S4 immobilization by fast inactiva-
tion may inhibit slow inactivation (Featherstone et al.,
1996; Richmond et al., 1998). Indeed, Cha et al. (1999)
have shown that S4 voltage sensors in domains III and
IV, but not I and II, are immobilized by Na channel fast
inactivation. Furthermore, the largest effects on Na
channel slow inactivation result from mutations of S4
in domains I and II (Kontis and Goldin, 1997; see also
Mitrovic et al., 2000). Thus, it is likely that the S4 seg-
ments in domains I and II make significantly different
contributions to slow inactivation compared with do-
mains III and IV. However, whether the effects of each
S4 on slow inactivation transfer to its outer pore seg-
ments remains unknown.

In summary, our findings demonstrate that the role
of the outer ring of charge is not limited to conven-
tional notion that it increases the conductance by at-
tracting cations into the channel entryway via its elec-
trostatic action (Bell and Miller, 1984; Green et al.,
1987). The molecular motions of the outer ring of
charge (especially E403) suggest an unexpected role in
slow inactivation of the Na channel.
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