

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2008 Society for Industrial and Applied Mathematics
Vol. 37, No. 5, pp. 1595–1612

EXTRA UNIT-SPEED MACHINES ARE ALMOST AS POWERFUL
AS SPEEDY MACHINES FOR FLOW TIME SCHEDULING∗

HO-LEUNG CHAN† , TAK-WAH LAM† , AND KIN-SHING LIU†

Abstract. We study online scheduling of jobs to minimize the flow time and stretch on parallel
machines. We consider algorithms that are given extra resources so as to compensate for the lack
of future information. Recent results show that a modest increase in machine speed can provide
very competitive performance; in particular, using O(1) times faster machines, the algorithm SRPT
(shortest remaining processing time) is 1-competitive for both flow time [C. A. Phillips et al., in
Proceedings of STOC, ACM, New York, 1997, pp. 140–149] and stretch [W. T. Chan et al., in
Proceedings of MFCS, Springer-Verlag, Berlin, 2005, pp. 236–247] and HDF (highest density first) is
O(1)-competitive for weighted flow time [L. Becchetti et al., in Proceedings of RANDOM-APPROX,
Springer-Verlag, Berlin, 2001, pp. 36–47]. Using extra unit-speed machines instead of faster machines
to achieve competitive performance is more challenging, as a faster machine can speed up a job but
extra unit-speed machines cannot. This paper gives a nontrivial relationship between the extra-speed
and extra-machine analyses. It shows that competitive results via faster machines can be transformed
to similar results via extra machines, hence giving the first algorithms that, using O(1) times unit-
speed machines, are 1-competitive for flow time and stretch and O(1)-competitive for weighted flow
time.

Key words. online scheduling, flow time, stretch, competitive analysis, extra-resource augmen-
tation

AMS subject classifications. 68Q25, 68W15, 68W40

DOI. 10.1137/060653445

1. Introduction. In this paper we revisit the problem of online scheduling of
jobs to minimize the flow time and stretch on m ≥ 2 parallel machines (see [24] for a
survey). Each job is released at an unpredictable time and is sequential in nature (i.e.,
it cannot be executed by more than one machine at a time). We consider the case
where the processing time (work) of a job is known when it is released. Preemption
is allowed at no cost, i.e., a preempted job can be resumed at the point of preemption
on any machine. SRPT (shortest remaining processing time first) is a typical example
for scheduling in this setting.

Given a schedule, the flow time of a job is the amount of time between its release
time and its completion time, and the stretch is the ratio of the flow time to the
processing time. In some applications, each job is given a weight, and the concern
is the weighted flow time. Common objectives for job scheduling are to minimize
the total (or, equivalently, average) flow time (e.g., [19, 20, 2, 1, 21]), stretch (e.g.,
[7, 9, 22]), or weighted flow time (e.g., [4, 14, 3]) of all jobs. Minimizing stretch is
actually a special case of minimizing weighted flow time if we assign the weight of
each job to be the reciprocal of its processing time. An online scheduler is said to be
c-competitive for flow time (resp., stretch, weighted flow time) if for any job sequence
it guarantees the total flow time (resp., stretch, weighted flow time) to be at most c
times that of the optimal offline schedule.

∗Received by the editors March 2, 2006; accepted for publication (in revised form) August 23,
2007; published electronically February 8, 2008. A preliminary version of this paper appeared in
the Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2006,
pp. 334–343.

http://www.siam.org/journals/sicomp/37-5/65344.html
†Department of Computer Science, University of Hong Kong, Hong Kong (hlchan@cs.hku.hk,

twlam@cs.hku.hk, ksliu@cs.hku.hk).

1595

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1596 HO-LEUNG CHAN, TAK-WAN LAM, AND KIN-SHING LIU

Related work. SRPT is perhaps the most well-studied online algorithm for
minimizing flow time. For scheduling a single machine (m = 1), SRPT is 1-competitive
[19]. For m ≥ 2 machines, Leonardi and Raz [20] showed that SRPT achieves the best
possible competitive ratio, which is Θ(min(logn/m, log Δ)), where n is the number
of jobs and Δ is the maximum to minimum ratio of processing times. In the offline
context, minimizing total flow time on parallel machines is NP-hard [15], and no
algorithm is known to have a constant approximation ratio.

Resource augmentation, pioneered by Kalyanasundaram and Pruhs [17], is a pop-
ular approach to studying better performance guarantee for improving the competi-
tiveness of online scheduling (e.g., [23, 21, 13, 11, 16, 6]). Specifically, this approach
allows the online scheduler to have extra resources so as to compensate for the lack
of future knowledge. The key concerns include (i) whether extra resources can lead
to 1-competitive (or even better) performance against the optimal offline algorithm
using no extra resources, and (ii) how competitive an arbitrarily small amount of
extra resources can be. Extra resources can be in the form of faster machines or
extra (unit-speed) machines. Below we denote a machine that can complete s ≥ 1
units of work in one unit of time as an s-speed machine. For minimizing flow time
on parallel machines, Phillips et al. [23] were the first to show that SRPT when given
(2−1/m)-speed machines is 1-competitive or, in short, (2−1/m)-speed 1-competitive.
McCullough and Torng [21] later showed that SRPT is indeed α-speed 1

α -competitive
for any α ≥ 2 − 1/m.

Let us switch to the results on minimizing stretch and weighted flow time on par-
allel machines (one can refer to [22, 5, 4, 23] for results on a single machine). For the
case of stretch, Muthukrishnan et al. [22] have showed that SRPT is 14-competitive
and no online algorithm can be 1-competitive. Chekuri, Khanna, and Zhu [14] pro-
posed a different algorithm that is 9.81-competitive. They also gave a lower bound on
the competitive ratio for weighted flow time of Ω(min(

√
Δ,

√
W, (n/m)1/4)), where

W is the maximum to minimum ratio of the weights. With resource augmenta-
tion, Becchetti et al. [6] showed that HDF (highest density first) is (2 + 2ε)-speed
(1 + 1

ε)-competitive for weighted flow time. This implies that SJF (shortest job first)
is (2 + 2ε)-speed (1 + 1

ε)-competitive for stretch. Recently, more results on stretch
have become known. Chekuri et al. [13] proved that the nonmigratory algorithm IMD
(proposed in [1]) is (1 + ε)-speed O(1 + 1

ε)-competitive, and Chan et al. [12] showed
that SRPT is indeed 5-speed 1-competitive.

Improving the competitiveness via extra unit-speed machines is more challenging.
While a faster machine can speed up a job, multiple unit-speed machines cannot. In
other words, we cannot use x unit-speed machines to simulate an x-speed machine,
yet the reverse is possible (using time-sharing). The literature contains only a few
results on exploiting extra machines to obtain competitive scheduling (see [17, 23,
18, 13]). For flow time scheduling on parallel machines, Chekuri et al. [13] have
shown that the algorithm IMD when given (1+ ε)m unit-speed machines is O(1+ 1

ε)-
competitive for both flow time and stretch. Whether O(m) unit-speed machines can
make an algorithm 1-competitive for flow time or stretch has been an open problem.
There are also results on exploiting extra machines in other problem settings of flow
time scheduling [17, 23]. In particular, Kalyanasundaram and Pruhs [17] studied the
nonclairvoyant setting on a single machine, and Phillips et al. [23] considered the
nonpreemptive setting for parallel machines. The power of extra machines has also
been studied in the context of deadline scheduling by Koo et al. [18] and Phillips et
al. [23].

To ease our discussion, we adopt the following notation. Let α and τ be any

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EXTRA UNIT-SPEED MACHINES FOR FLOW TIME SCHEDULING 1597

Table 1

Results on flow time scheduling. Results that are given in this paper are marked with †. Note
that ε > 0 and s are any real numbers and h ≥ 1 is any integer.

Extra speed Extra machines
Competitive Competitive

Speed ratio Machines ratio
Flow time (1 + ε) O(1 + 1/ε) [13] �(1 + ε)m� O(1 + 1/ε) [13]

2 1 [23] �(2 + ε)m� 1 + 1/ε †
s ≥ 2 1/s [21] 34m 1 †

Stretch (1 + ε) O(1 + 1/ε) [13] �(1 + ε)m� O(1 + 1/ε) [13]
5 1 [12] 533m 1 †

Weighted 2 + 2ε 1 + 1/ε [6] �(4 + 24ε)m� 8 + 1/ε †
flow time 16s, s ≥ 1 1/s †
Waiting s ≥ 2 1/s [21] (36h− 2)m, 1/h †

time h ≥ 1

positive real constants. An algorithm A is said to be α-speed c-competitive (resp.,
τ -machine c-competitive) for a certain objective function if, for any job sequence, A
using m α-speed machines (resp., �τm� unit-speed machines) has a performance at
most c times of any optimal offline algorithm using m unit-speed machines. When
we consider an algorithm A running on m α-speed machines (resp., �τm� unit-speed
machines), we refer it as A(α) (resp., A 〈τ〉).

Our results. This paper shows a nontrivial relationship between the extra-
machine analysis and the extra-speed analysis of flow time scheduling. In particular,
two methods are given to transform results on competitiveness via faster machines
into similar results via extra unit-speed machines. These transformations give the first
algorithms that are O(1)-machine 1-competitive for flow time and stretch and O(1)-
competitive for weighted flow time. See Table 1 for a summary of results. Details are
as follows.

Flow time transformation. The first transformation is relatively simple, serv-
ing as a warm-up. It aims to preserve the flow time of each individual job. Specif-
ically, given an α-speed algorithm A(α) for some α > 1, we want to transform A
to an algorithm A′ that uses extra unit-speed machines to match the flow time of
each job as closely as possible. Specifically, our transformation guarantees that A′

when given O(α)m (unit-speed) machines increases the flow time of each job at most
α(1 + o(1)) times. Since SRPT is α-speed 1

α -competitive for flow time, the trans-
formation gives an algorithm that is O(α)-machine (1 + o(1))-competitive (and more
precisely, (2 + ε)-machine (1 + 1

ε)-competitive for any ε > 0). Note that A′ also
preserves the competitiveness on weighted flow time and stretch. Thus, based on
HDF [6], the transformation gives an O(1)-machine O(1)-competitive algorithm for
weighted flow time.

Waiting time transformation. The waiting time of a job is the amount of time
the job is waiting for processing before it is completed. To obtain an O(1)-machine
1-competitive algorithm for flow time and stretch, we need a more complicated trans-
formation based on the total waiting time of jobs. By definition, an algorithm A
is O(1)-machine 1-competitive for waiting time if and only if A is O(1)-machine 1-
competitive for on flow time. Note that using extra unit-speed machines can possibly
improve the competitive ratio on waiting time to be smaller than one, but it is im-
possible for flow time.

Consider any algorithm A using α-speed machines. Denote LA(α)(I) the total
waiting time incurred for a job sequence I by A(α). The work of McCullough and

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1598 HO-LEUNG CHAN, TAK-WAN LAM, AND KIN-SHING LIU

Torng [21] implies that SRPT is α-speed 1
α -competitive for waiting time, where α ≥

2 − 1/m. That is, for any I, LSRPT (α)(I) ≤ 1
αLOPT (I), where OPT denotes the

optimal offline algorithm using m unit-speed machines. Using unit-speed machines to
simulate SRPT(α) or any A(α) does not necessarily blow up the total waiting time α
times. Ideally we want to transform A(α) to an algorithm A′ using τm = O(α)m unit-
speed machines such that LA′〈τ〉(I) ≤ cLA(α)(I), where c is a constant independent
of α. Then, substituting A(α) with SRPT(c), we have LA′〈τ〉(I) ≤ LOPT (I). Such a
constant c, however, does not exist.1

To obtain an O(1)-machine 1-competitive algorithm for waiting time, we aim at
a less demanding requirement, namely, LA′〈τ〉(I) ≤ cLA(α)(I) + o(LOPT (I)). In fact,
we find that c = 2 is already feasible. Then, substituting A with SRPT and α with
O(c), we have LA′〈τ〉(I) ≤ LOPT (I), and thus A′ is O(1)-machine 1-competitive for
waiting time, as well as for flow time.

The second transformation can be extended to give a guarantee for normalized
waiting time (i.e., the waiting time divided by the processing time). This leads to an
algorithm that is O(1)-machine 1-competitive for stretch.

Technically speaking, the transformations are based on two concepts called rate
control and waiting time allowance. Roughly speaking, we need rate control when jobs
are released in a bulk; the idea is to partially process and spread these jobs in a certain
way without blowing up the flow time. The other concept is about estimating the
maximum waiting time of each job that would not exceed that of the offline optimal
algorithm. Both concepts make scheduling easy. To make these two concepts viable,
we exploit a simulation of an α-speed competitive algorithm.

This paper also contributes to the extra-speed analysis of SJF and HDF. In par-
ticular, we improve the result in [6] to show that HDF can be 16-speed 1-competitive
for weighted flow time.

2. Transformation that preserves flow time. Throughout this paper, we
use I to denote a sequence of jobs, and denote the release time and the processing
time (i.e., the required work) of a job J as r(J) and p(J), respectively. Note that
both r(J) and p(J) are real numbers. Let A(α) be an algorithm using m α-speed
machines, where α ≥ 1 is any real number. This section shows how to transform
A(α) to an algorithm, called Scatter(A(α), τ), that uses �τm� unit-speed machines
for any τ > α and incurs a flow time comparable to A(α) as follows.

Lemma 1. Consider any job sequence I. For each job J ∈ I, the flow time of J
in the schedule of Scatter(A(α), τ) is at most α(1 + α−1

τ−α) times in the schedule of
A(α).

Details of Scatter(A(α), τ) are as follows. Scatter(A(α), τ) divides the �τm�
machines into two bands. Band 1 uses m machines and Band 2 �(τ − 1)m� machines.
A newly released job J always goes to Band 1 where it is partially processed. Then J
is transferred to Band 2 for completion. Consider any sequence I of jobs. We denote
the flow time of a job J in the schedule of A(α) as FA(α)(J). We aim to bound the

1We consider a simple example where α = 2. Let I be a job sequence such that the ith job is
released at time 1 − (1/2)i and the required work is (1/2)i. An algorithm with m 2-speed machines
can complete each job before the next one is released, thus incurring zero waiting time. On the other
hand, any algorithm using τm unit-speed machines must have some job wait after the (τm+1)th job
is released, thus incurring nonzero waiting time. Note that even one 2-speed machine can complete
all jobs with zero waiting time.

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EXTRA UNIT-SPEED MACHINES FOR FLOW TIME SCHEDULING 1599

flow time of J in Band 1 and Band 2, denoted as F1(J) and F2(J), as follows:

(i) F1(J) = FA(α)(J); and (ii) F2(J) ≤ (α− 1)τ

τ − α
F1(J).

Then it follows that the flow time of J in the schedule of Scatter(A(α), τ) is F1(J)+

F2(J) ≤ (1+ (α−1)τ
τ−α)FA(α)(J) = α(1+ α−1

τ−α)FA(α)(J), which is as stated in Lemma 1.
Simulation. Requirement (i) can be achieved easily by simulating the execution

of A(α). Precisely, Band 1 uses m machines and schedules the jobs according to a
simulated copy of A(α), which uses m α-speed machines. That is, Band 1 runs a job
J if and only if A(α) runs the job J . When A(α) completes J , Band 1 transfers J to
Band 2. Thus, F1(J) = FA(α)(J), and J is processed in Band 1 for exactly p(J)/α
units of work.

Rate control. Let rem(J) be the amount of remaining work of a job J when
it is transferred to Band 2. Jobs may be released in bulk to Band 1, yet they will
each be partially processed before being transferred to Band 2 and will thus spread
out eventually. Band 1 controls the rate of work transferred to Band 2 in the sense
that jobs released and transferred within any time interval have bounded remaining
work (see Lemma 2 for technical details). With rate control, Requirement (ii) can be
satisfied easily using a simple strategy, namely, the latest release time first algorithm
(LRT), which at any time t processes jobs with latest release time (to Band 1). Ties
are broken arbitrarily.

The above discussion of Scatter is summarized in Algorithm 1, followed by two
lemmas on the work transferred to Band 2 and the flow time in Band 2.

Algorithm 1. Scatter(A(α), τ), which uses �τm� unit-speed machines.

Job Release: A newly released job goes to Band 1.
Band 1: It uses m machines. Jobs are scheduled according to a simulated copy of

A(α). When a job J is completed in the simulated A(α), it is transferred to Band
2.

Band 2: It uses �(τ − 1)m� machines and it completes all jobs using LRT.

Lemma 2 (rate control). Consider any time interval [t, t′], let H be the set of jobs
released within [t, t′] and transferred to Band 2 within [t, t′]. Then

∑
J∈H rem(J) ≤

(α− 1)(t′ − t)m.
Proof. Each job J ∈ H has been processed by Band 1 for 1

αp(J) units of work
during the time interval [t, t′]. Band 1 can perform at most m(t′ − t) units of work
during [t, t′]. Thus,

∑
J∈H

1
αp(J) ≤ m(t′ − t), and

∑
J∈H rem(J) =

∑
J∈H(1 −

1
α)p(J) ≤ (α− 1)(t′ − t)m.

Lemma 3 (LRT). For any job J , F2(J) ≤ (α− 1) × τ
τ−αF1(J).

Proof. For any job J , let t0 = r(J), let t1 be the time J is transferred from
Band 1 to Band 2, and let t2 be the time J is completed by Band 2. Note that
F1(J) = t1 − t0 ≥ p(J)/α, and F2(J) = t2 − t1.

Assume that J waits for a number of time periods in Band 2 before it is completed.
Let S be the set of jobs that have ever received processing in Band 2 while J is waiting.
For each job J ′ ∈ S, J ′ is released no earlier than t0 (i.e., r(J ′) ≥ r(J)), and J ′ is
transferred to Band 2 no later than t2. Applying Lemma 2 to the interval [t0, t2], we
have

∑
J′∈S rem(J ′) ≤ (α− 1)(t2 − t0)m.

Whenever J waits in Band 2, all the �(τ − 1)m� machines are processing jobs in

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1600 HO-LEUNG CHAN, TAK-WAN LAM, AND KIN-SHING LIU

S. The waiting time of J in Band 2 is at most

1

�(τ − 1)m�
∑
J′∈S

rem(J ′) ≤ 1

�(τ − 1)m� (α− 1)(t2 − t0)m.

Therefore,

F2(J) = t2 − t1

≤ α− 1

α
p(J) +

α− 1

�(τ − 1)m� (t2 − t0)m

≤ (α− 1)F1(J) +
α− 1

τ − 1
(F1(J) + F2(J)).

Rearranging the last inequality, we have F2(J) ≤ (α−1)τ
τ−α F1(J).

Based on the results that SRPT is 2-speed 1
2 -competitive for flow time [21], and

HDF is 4-speed 2-competitive for weighted flow time [6], we can apply Lemma 1 to
obtain the following extra-machine competitive results.

Corollary 4. Consider any ε > 0. (i) The algorithm Scatter(SRPT(2), 2+ε) is
(2+ε)-machine (1+1/ε)-competitive for flow time. (ii) The algorithm Scatter(HDF(4),
4 + 24ε) is (4 + 24ε)-machine (8 + 1/ε)-competitive for weighted flow time.

3. Transformation that preserves waiting time. The waiting time of a job
is the amount of time the job is waiting for processing before it is completed. Recall
that SRPT is α-speed (1/α)-competitive for flow time, where α ≥ 2 − 1/m [21]. In
the schedule of SRPT(α), the flow time of a job J is exactly p(J)/α plus the waiting
time. Thus, SRPT is also α-speed (1/α)-competitive for waiting time.

In this section we show how to transform an algorithm A that uses m α-speed ma-
chines, where α ≥ 1 is any real number, to an algorithm Scatter & Squash(A(α), τ)
that uses �τm� unit-speed machines and incurs a total waiting time comparable to
that of A(α). Details are as follows.

Lemma 5. Let τ = 7α+5k−2 for any integer k ≥ 1. Then, for any job sequence I,
the total waiting time incurred by Scatter & Squash(A(α), τ) is at most 2LA(α)(I)+
1
kLOPT (I), where LA(α)(I) and LOPT (I) denote the total waiting time incurred by
A(α) and the optimal algorithm OPT using m unit-speed machines, respectively.

We will prove Lemma 5 in section 3.1. Let us consider its implication first.
Suppose that A is α-speed (1/x)-competitive for waiting time for some x ≥ 1. Let k =
�x� and τ = 7α+5 �x�−2. By Lemma 5, Scatter & Squash gives an O(α+x)-machine
(3/x)-competitive algorithm for waiting time. In other words, based on the result that
SRPT is 3-speed (1/3)-competitive for waiting time [21], we immediately obtain a 34-
machine 1-competitive algorithm for waiting time. Notice that an algorithm using
unit-speed machines is 1-competitive for waiting time if and only if it is 1-competitive
for flow time. The competitive ratio of Scatter & Squash for waiting time can be
further reduced to less than one using a more competitive result of SRPT. However,
for flow time, the competitive ratio of an algorithm using unit-speed machines is lower
bounded by one. The following corollary summarizes these results.

Corollary 6. (i) Scatter & Squash gives an algorithm that is 34-machine 1-
competitive for flow time. (ii) For any integer h ≥ 1, Scatter & Squash (based on
SRPT(3h)) gives an algorithm that is (36h−2)-machine (1/h)-competitive for waiting
time.

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EXTRA UNIT-SPEED MACHINES FOR FLOW TIME SCHEDULING 1601

Algorithm 2. Scatter & Squash(A(α), τ), where τ = 7α + 5k − 2 for any integer
k ≥ 1.

Job Release: A newly released job goes to Band 1a.
Band 1a: It uses m machines. Jobs are scheduled according to a simulated copy

of A(α). At any time t, if a job J is completed in the simulated A(α), J is
transferred to Band 1b if t ≤ r(J) + p(J); otherwise, J is transferred to Band 2
(with AWT (J) = L1a(J)).

Band 1b: It uses (2k+1)m machines. It runs the algorithm EPPBUSY〈2k + 1〉; i.e.,
at any time, it arbitrarily selects up to (2k + 1)m jobs that are still within their
earliest processing periods for execution. At the end of the earliest processing
period of a job J , if J is not completed, then J is transferred to Band 2 (with
AWT (J) = L1a(J) + L1b(J)).

Band 2: It uses �(7α + 3k − 4)m� machines. It runs the MIN-AWT algorithm; i.e.,
at any time, it greedily schedules the jobs with smallest AWT. A job remains in
Band 2 until it is completed.

3.1. The algorithm. As shown in Algorithm 2, Scatter & Squash divides the
machines into 3 bands called Band 1a, Band 1b, and Band 2, using, respectively, m,
(2k + 1)m, and �(7α + 3k − 4)m� machines, where k is any integer ≥ 1. Similar to
the algorithm Scatter, Band 1 (comprising Band 1a and Band 1b) only partially
processes the jobs, and Band 2 ensures that all jobs get completed. For i = 1a, 1b,
1, or 2, we denote Li(J) the waiting time of a job J in Band i, and let Li(I) =∑

J∈I Li(J). Note that L1(J) = L1a(J) + L1b(J). Consider any job sequence I and
any job J in I. Given an algorithm A(α), Scatter & Squash aims to guarantee
that L1a(J) = LA(α)(J); L1b(I) ≤ 1

2kLOPT (I); and L2(J) ≤ L1(J). Then Lemma 5
follows. To achieve L2(J) ≤ L1(J), we ensure that jobs transferred from Band 1 to
Band 2 are easy to schedule in the following sense. Let rem(J) be the remaining work
of a job J when J is transferred to Band 2.

(a) Rate control. For any time interval T , the sum of rem(J) over all jobs released
during T and transferred from Band 1 to Band 2 during T is at most (α −
1)m|T |.

(b) Bounded remaining work. rem(J) ≤ L1(J).

Band 1a uses the simulation technique presented in the last section. It uses m
machines and schedules jobs according to a simulated copy of A(α). When a job
J is transferred out of Band 1a, p(J)/α units of its work have been processed, and
Band 1a incurs exactly the same waiting time as A(α); i.e., L1a(J) = LA(α)(J). By
Lemma 2, Band 1a provides the rate control property.

Define the earliest processing period of a job J to be the time interval [r(J), r(J)+
p(J)]. To achieve the bounded remaining work property, we simply ensure that each
job is transferred to Band 2 after its earliest processing period. That is, a job trans-
ferred out of Band 1a within its earliest processing period is retained in Band 1b until
the end of its earliest processing period.

Lemma 7. If a job J is transferred from Band 1 to Band 2 at the end of or after
J ’s earliest processing period, then rem(J) ≤ L1(J).

Proof. Let w(J) ≥ 0 be the amount of work done on J in Band 1. J is transferred
to Band 2 at r(J) + w(J) + L1(J), which is at least r(J) + p(J). Thus, L1(J) ≥
p(J) − w(J) = rem(J).

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1602 HO-LEUNG CHAN, TAK-WAN LAM, AND KIN-SHING LIU

Band 1 as a whole still satisfies the rate control property because jobs released and
transferred to Band 2 within an interval T are a subset of jobs released and transferred
out of Band 1a within an interval T . The nontrivial part is how to ensure that the
waiting time incurred in Band 1b is comparable to A(α) or OPT . To our surprise,
we find that Band 1b, using an arbitrary algorithm with (2k + 1)m machines to
process jobs during their earliest processing periods, would incur a total waiting time
of at most 1

2k times of OPT . We denote such an algorithm by EPPBUSY〈2k + 1〉.
Formally speaking, at any time, EPPBUSY considers only jobs that are still in their
earliest processing periods, and it arbitrarily selects one such job for each machine.
Notice that EPPBUSY may not complete a job J and does not incur waiting time
beyond the earliest processing period of J , yet OPT does both. In section 3.2, we will
give a careful charging scheme to relate the waiting times of EPPBUSY and OPT .
In summary, Band 1 has the following upper bound on waiting time:

L1(I) = L1a(I) + L1b(I) ≤ LA(α)(I) + 1
2kLOPT (I).

For Band 2, we want to complete the remaining work of each job J such that
L2(J) is at most L1(J). In other words, J is allowed to wait in Band 2 up to L1(J)
units of time. To ease our discussion, we assume that each job transferred to Band 2 is
associated with an extra parameter AWT (J) representing the allowed waiting time of
J , and AWT (J) is set to L1(J). Based on the properties of rate control and bounded
remaining work, we find that MIN-AWT, a greedy strategy that schedules jobs with
smallest AWT (ties are broken arbitrarily), can complete each job within its allowed
waiting time if Band 2 is given �(7α + 3k − 4)m� machines. The above description
of Scatter & Squash is summarized in Algorithm 2. The rest of this subsection is
devoted to proving that for each job J in I, MIN-AWT incurs a waiting time at most
L1(J).

MIN-AWT. Consider a job J that is transferred from Band 1 to Band 2, say,
at time tsf (J). Recall that AWT (J) is set to L1(J), and the remaining work of J at
tsf (J), denoted rem(J), is at most AWT (J). We want to show that if Band 2 uses
MIN-AWT on O(α+ k) machines, then J waits no more than AWT (J) units of time
in Band 2, or, equivalently, J is completed by the time d(J) = tsf (J) + rem(J) +
AWT (J). We call d(J) the deadline of J in Band 2.

We use induction to show that every job is completed by its deadline. Consider
jobs in increasing order of deadlines. Let J be a job. Assume that all jobs with
deadline earlier than J are completed by their deadlines. We focus on the total waiting
time of J up to d(J). During [tsf (J), d(J)], whenever J is waiting, all machines in
Band 2 are processing jobs J ′ with the following properties:

1. AWT (J ′) ≤ AWT (J);
2. J ′ is transferred to Band 2 no earlier than tsf (J) − 2AWT (J) (otherwise,

d(J ′) = tsf (J ′) + rem(J ′) + AWT (J ′) < tsf (J) < d(J) and J ′ is completed
before tsf (J)); and

3. J ′ is transferred to Band 2 no later than d(J).
Let S be the set of all jobs J ′ satisfying the above properties. Below we upper bound
the sum of rem(J ′) over all J ′ in S.

Lemma 8.

∑
J′∈S rem(J ′) ≤ δmAWT (J), where δ = 7α + 3k − 4.

Proof. Let t1 = tsf (J) − 2AWT (J). By definition, jobs in S are transferred to
Band 2 within [t1, d(J)]. Let t0 = t1 − xAWT (J) for some x > 1. We divide the jobs
in S according to their release time (to Band 1a). Let S1 = {J ′ ∈ S | r(J ′) ≥ t0} and
S2 = S − S1.

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EXTRA UNIT-SPEED MACHINES FOR FLOW TIME SCHEDULING 1603

Jobs in S1. We use the rate control property to bound the sum of rem(J ′) over
all J ′ in S1. For each job J ′ in S1, J

′ is released during the time interval [t0, d(J)]
and is transferred to Band 2 during [t1, d(J)]. Recall that t0 < t1. By the rate control
property,

∑
J′∈S1

rem(J ′) is at most (α− 1)m(d(J)− t0) ≤ (α− 1)m(x+4)AWT (J).

Jobs in S2. In this case, we exploit the bounded remaining work property and
the fact that AWT (J) is set to L1(J). Each job J ′ in S2 is released before t0 and
transferred to Band 2 on or after t1. Thus, J ′ is kept in Band 1 for a period of length
at least t1− t0 ≥ xAWT (J). Note that L1(J

′) (i.e., the waiting time of J ′ in Band 1)
= AWT (J ′) ≤ AWT (J). Thus, J ′ is processed by Band 1 for at least (x−1)AWT (J)
units of work from t0 to t1. Band 1 has only (2k + 2)m machines and it performs at
most (2k + 2)m(xAWT (J)) units of work from t0 to t1. Thus,

(2k + 2)mxAWT (J) ≥
∑

J′∈S2

(x− 1)AWT (J)

≥
∑

J′∈S2

(x− 1)AWT (J ′)

≥
∑

J′∈S2

(x− 1)rem(J ′).

So,
∑

J′∈S2
rem(J ′) is at most (2k+2)m x

x−1AWT (J). In conclusion,
∑

J′∈S rem(J ′) ≤
[(α− 1)(x + 4) + (2k + 2) x

x−1]mAWT (J). Putting x = 3, we obtain Lemma 8.

We are ready to prove that J can be completed by d(J). Whenever J is waiting
in Band 2 during [tsf (J), d(J)], all machines of Band 2 are processing jobs belonging
to the set S, and the sum of rem(J ′) over all jobs J ′ ∈ S is at most (7α + 3k −
4)mAWT (J). Band 2 uses �(7α + 3k − 4)m� machines, and the work due to S can
keep J waiting in Band 2 for at most AWT (J) units of time. Thus, J is completed
by d(J).

3.2. Analysis of EPPBUSY. Scatter & Squash uses the algorithm EPP-
BUSY in Band 1b. To upper bound the waiting time incurred in Band 1b, we
first study in this section the waiting time incurred by EPPBUSY when it is used
to process a sequence of jobs. This result may be of independent interest.

EPPBUSY〈h〉 uses hm machines for any integer h ≥ 2. It schedules a job only
within its earliest processing period and it may not be able to finish each job. Let OPT
be the optimal scheduler, which uses m machines to process all jobs to completion
and minimizes the total waiting time.

For any job sequence I, let P (I) be the schedule produced by EPPBUSY〈h〉 on
I, and, similarly, OPT (I) for OPT . Note that a job remains in P (I) only during its
earliest processing period, while a job remains in OPT (I) until it is completed. We
want to show that the total waiting time of jobs in P (I) is at most 1

h−1 of that of
OPT (I).

We first focus on the schedule P (I). P (I) may contain one or more waiting
periods (a waiting period is a period in which at least one job is waiting at any time).
Denote these waiting periods as λ1 = [t1, t

′
1], λ2 = [t2, t

′
2], λ3 = [t3, t

′
3], . . ., where

t1 < t′1 < t2 < t′2 < t3 < t′3 < · · · . Let |λi| = t′i − ti. Note that P (I) accumulates
waiting time only during the waiting periods.

Definition 9. Let S = {λu, λu+1, . . . , λv} be a collection of consecutive waiting
periods. Recall that h is the parameter required by EPPBUSY〈h〉. S is said to be h-

close if tu+1 ≤ tu+h|λu|, tu+2 ≤ tu+h(|λu|+ |λu+1|), . . ., and tv ≤ tu+h
∑v−1

i=u |λi|.

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1604 HO-LEUNG CHAN, TAK-WAN LAM, AND KIN-SHING LIU

λ1 λ2 λ3 λ4 λ5 λ6

t1 t5

t1 + h|λ1|

t1 + h
∑2

i=1 |λi|

t1 + h
∑3

i=1 |λi| t5 + h|λ5|

TS1
= t1 + h

∑4
i=1 |λi| TS2

= t5 + h
∑6

i=5 |λi|

λ(S1) λ(S2)

time

Fig. 1. Two h-close collections of waiting periods (h = 2 in this example).

Furthermore, define tS to be the time (tu + h
∑v

i=u |λj |), and define λ(S) to be
the interval [tu, tS]. Note that |λ(S)| = h

∑v
j=u |λj |. See Figure 1 for an example.

Fact 10. For any u ≤ i ≤ v, tS − ti ≥ h(|λi| + |λi+1| + · · · + |λv|).
We partition the waiting periods in P (I) into maximal h-close collections S1 =

{λ1, λ2, . . . , λk1
}, S2 = {λk1+1, λk1+2, . . . , λk2

}, That is, the next waiting period
beyond each Si has a starting time greater than tSi . The notion of a maximal h-close
collection of waiting periods defines a framework for our analysis. In the following,
we show that for each maximal h-close collection S of waiting periods, the waiting
time incurred by P (I) within the interval λ(S) is at most a factor of 1/(h− 1) of the
waiting time incurred by OPT (I) within λ(S).

The following notion further provides a tool for lower bounding the waiting time
of OPT (I).

Definition 11. Consider any interval λ = [t, t′]. Let J be a job with required
work p(J). If λ is enclosed in the earliest processing period of J , the work required by
J can be partitioned into three chunks of size t− r(J), t′ − t, and p(J) − (t′ − r(J)),
respectively. The middle chunk is referred to as the λ-work of J . In general, when λ
is not enclosed in the earliest processing period of J , we let λ′ = λ∩ [r(J), r(J)+p(J)]
and define the λ-work of J to be its λ′-work.

We denote the size of the λ-work of J as W (J, λ), i.e., W (J, λ) = |λ∩ [r(J), r(J)+
p(J)]|. A fact useful to our analysis is that if W (J, λ) > 0, the earliest time OPT (I)
(or any schedule using unit-speed machines) can start processing the λ-work of J is
max{t, r(J)}.

Let S = {λu, λu+1, . . . , λv} be a maximal h-close collection of waiting periods.
Let J be any job. Consider the λi-work of J for all λi ∈ S. Below, we give a way to
mark the earliest possible schedule of the λi-work of J in OPT (I). Let λi = [ti, t

′
i]

be the first waiting period of S that overlaps with the earliest processing period of J
(i.e., W (J, λi) > 0). Note that OPT cannot process the λi-work of J earlier than ti or
r(J). We mark the first W (J, λi) units of work starting from the time max{ti, r(J)}
in the schedule of J in OPT (I). For each subsequent j > i, if the λj-work of J is
nonnull, we identify, in the schedule of J in OPT (I), the first time t ≥ tj when no
work has been marked, and we mark another W (J, λj) units of work starting from t.
We have the following lemma on the work marked on the schedule of J in OPT (I).

Within the time interval λ(S), we denote the waiting time of J incurred by P (I)
as LP (J)|λ(S), and similarly LOPT (J)|λ(S) for OPT (I).

Lemma 12. Suppose that in the course of marking all the λi-work of a job J in
OPT (I), a total of y units of work are marked beyond tS. Then LOPT (J)|λ(S) is at
least (h− 1)y.

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EXTRA UNIT-SPEED MACHINES FOR FLOW TIME SCHEDULING 1605

Proof. Assume that λi = [ti, t
′
i] is the first waiting period in S such that part

of the λi-work of J is marked beyond tS . Then, y ≤ |λi| + |λi+1| + · · · + |λv|. In
OPT (I), the λi-work of J is not completed by time tS . Thus, within λ(S), the
waiting time of J is at least tS − t′i = tS − ti − |λi|. By Fact 10, we conclude that
LOPT (J)|λ(S) ≥ h(|λi| + |λi+1| + · · · + |λv|) − |λi| ≥ (h− 1)y.

Lemma 13.

∑
J∈I LP (J)|λ(S) ≤ 1

h−1

∑
J∈I LOPT (J)|λ(S).

Proof. With respect to P (I), the total waiting time of all jobs during a waiting
period λi is exactly the total length of the λi-work of all jobs minus the amount of work
that EPPBUSY〈h〉 processes during λi. That is,

∑
J∈I LP (J)|λi

=
∑

J∈I W (J, λi) −
hm|λi|. Summing over all waiting periods in S, we have

∑
J∈I

LP (J)|λ(S) =

v∑
i=u

∑
J∈I

W (J, λi) −
v∑

i=u

hm|λi|

=

v∑
i=u

∑
J∈I

W (J, λi) −m|λ(S)|.

Note that
∑

J∈I LP (J)|λ(S) ≥ 0, and hence
∑v

i=u

∑
J∈I W (J, λi) ≥ m|λ(S)|.

Since OPT has only m machines, during λ(S), OPT can process at most m|λ(S)|
units of work. Consider the λi-work of all jobs over all λi in S. Their total size is∑v

i=u

∑
J∈I W (J, λi), which exceeds m|λ(S)|. Thus, not all λi-work can be marked

within λ(S) in OPT (I). The total amount of work marked beyond tS in OPT (I) is at
least

∑v
i=u

∑
J∈I W (J, λi)−m|λ(S)| =

∑
J∈I LP (J)|λ(S). By Lemma 12, LOPT (J)|λ(S)

is at least the total amount of λi-work marked beyond tS for J . Thus,
∑

J∈I LOPT (J)|λ(S)

is at least (h− 1)
∑

J∈I LP (J)|λ(S).

Corollary 14. For any job sequence I, let LP (I) be the total waiting time in-
curred by EPPBUSY〈h〉 and LOPT (I) be that for OPT . Then, LP (I) ≤ 1

h−1LOPT (I).

EPPBUSY in Scatter & Squash. We are now ready to analyze the wait-
ing time incurred by Band 1b of Scatter & Squash. Recall that Band 1b uses
(2k + 1)m machines to run EPPBUSY〈2k + 1〉. We want to prove that for any job
sequence I, the total waiting time incurred in Band 1b of Scatter & Squash is at
most 1/(2k)LOPT (I).

By definition of Scatter & Squash, a job J in I is transferred to Band 1b only
after it is partially scheduled in Band 1a. Thus, J remains in Band 1b only during a
subinterval of its earliest processing period.

Let us compare the schedule of Band 1b with the schedule of I when using a
stand-alone copy of EPPBUSY〈2k + 1〉. Denote the latter schedule Φ. At any time
t, if a job J remains in Band 1b, then t is within J ’s earliest processing period, and
J remains in Φ for possible processing. Thus, jobs remaining in Band 1b are a subset
of jobs remaining in Φ. As both Band 1b and the stand-alone EPPBUSY〈2k + 1〉 are
using (2k + 1)m machines, the number of jobs waiting in Band 1b, denoted #1b(I, t),
is at most the number of jobs waiting in Φ, denoted #Φ(I, t).

Let L1b(J) and LΦ(J) be the waiting times of J in the schedules of Band 1b and
Φ, respectively. We have

∑
J∈I

L1b(J) =

∫
#1b(I, t)dt ≤

∫
#Φ(I, t)dt =

∑
J∈I

LΦ(J) ≤ 1

2k

∑
J∈I

LOPT (J).

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1606 HO-LEUNG CHAN, TAK-WAN LAM, AND KIN-SHING LIU

4. Extension to weighted waiting time and stretch. The normalized wait-
ing time of a job refers to the waiting time divided by the processing time. An
algorithm is O(1)-machine 1-competitive for stretch if and only if it is O(1)-machine
1-competitive for normalized waiting time. To derive an O(1)-machine 1-competitive
algorithm for stretch, we want Scatter & Squash to transform a given α-speed al-
gorithm A(α) to an O(α)-machine algorithm that preserves the normalized waiting
time. In fact, Scatter & Squash can even be extended to preserve the weighted wait-
ing time when every job is given an arbitrary weight. The idea is quite simple. By the
definition of Scatter & Squash (in section 3.1), the performance guarantee for Band
1a and Band 2 is based on the (unweighted) waiting time of each job, and it remains
the same when weighted waiting time is concerned. As a whole, Band 1a still incurs
the same amount as A(α) does, and Band 2 incurs no more than Band 1 does. Only
Band 1b requires modification to cater to the weighted setting.

Before looking at the details of Band 1b, we prove a lemma that can transform a
special relationship of the unweighted waiting times of two schedules into a relation-
ship of their total weighted waiting times. Below, xi and yi denote the waiting time
of a job in two schedules, and wi is the weight of the job.

Lemma 15. Let x1, x2, . . . , xr and y1, y2, . . . , yr be two sequences of nonnegative
reals. Let γ be any positive real. Suppose that

∑q
i=1 xi ≤ γ

∑q
i=1 yi for all q = 1, . . . , r.

Then for any nondecreasing sequence of positive reals w1 ≥ w2 ≥ · · · ≥ wr, we have∑r
i=1 wixi ≤ γ

∑r
i=1 wiyi.

Proof. We prove the lemma by induction on r. The case for r = 1 is obvious.
Assume that the lemma is true when r = z, for some integer z ≥ 1. When r = z + 1
we consider the following two cases.

Case 1. If xz+1 ≤ γyz+1, then
∑z+1

i=1 wixi =
∑z

i=1 wixi+wz+1xz+1 ≤ γ
∑z

i=1 wiyi
+γwz+1yz+1 = γ

∑z+1
i=1 wiyi.

Case 2. Otherwise, xz+1 > γyk+1. Let δ = xz+1 − γyz+1.

∑
1≤i≤z+1

wixi =
∑

1≤i<z

wixi + wzxz + wz+1(γ × yz+1 + δ)

=
∑

1≤i<z

wixi + wzxz + wz+1δ + wz+1γyz+1

≤
∑

1≤i<z

wixi + wz(xz + δ) + γwz+1yz+1.

Define the sequence (d1, d2, . . . , dz) such that di = xi for i = 1, . . . , z − 1 and
dz = xz + δ. For any q = 1, . . . , z − 1,

∑q
i=1 di =

∑q
i=1 xi ≤ γ

∑q
i=1 yi. For q = z,

∑
1≤i≤z

di =
∑

1≤i≤z

xi + δ =
∑

1≤i≤z+1

xi − γyz+1 ≤ γ
∑

1≤i≤z+1

yi − γyz+1 = γ
∑

1≤i≤z

yi.

Applying the induction hypothesis to di and yi, we have
∑z

i=1 widi ≤ γ
∑z

i=1 wiyi.

Thus, we have
∑z+1

i=1 wixi ≤ γ
∑z

i=1 wiyi + γwz+1yz+1 = γ
∑z+1

i=1 wiyi. The induction
is complete.

In Scatter & Squash, Band 1b uses an arbitrary algorithm with (2k + 1)m ma-
chines to process jobs during their earliest processing periods. We enhance Band 1b
by selecting jobs with largest weights. We call this new algorithm EPPHWF (earli-
est processing period, highest weight first), and denote it as EPPHWF〈h〉 when it is
equipped with hm processors, where h is an integer at least 2. Intuitively, jobs with

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EXTRA UNIT-SPEED MACHINES FOR FLOW TIME SCHEDULING 1607

large weights will wait less. Let OPT be the optimal algorithm (using m unit-speed
machines) for minimizing weighted flow time. Our key observation is that for any
job weight w, we can bound the total waiting time of all jobs with weight at least w
in EPPHWF〈2k + 1〉 to be at most 1/(2k) times that of OPT . Then, we can make
use of Lemma 15 inductively to show that EPPHWF〈2k + 1〉 incurs a total weighted
waiting time at most 1/(2k) times that of OPT . Details are as follows.

Lemma 16. Let h ≥ 2 be an integer. For any job sequence I, the total weighted
waiting time incurred by EPPHWF〈h〉 is at most 1

h−1 times that of OPT.
Proof. Consider any job sequence I. We compare the schedules of EPPHWF〈h〉

and OPT. Let w1 > w2 · · · > wr be the distinct weights of the jobs in I. Con-
sider any integer q ∈ {1, 2, . . . , r}. With respect to the schedule of EPPHWF〈h〉, let
L(I)|wq

be the total unweighted waiting time incurred on jobs with weight exactly
wq. LOPT (I)|wq is defined similarly for the schedule of OPT. Note that for jobs with
weight at least wq, the total weighted waiting time incurred by EPPHWF〈h〉 and
OPT is

∑q
i=1 wiL(I)|wi

and
∑q

i=1 wiLOPT (I)|wi
, respectively.

We first focus on the unweighted waiting time. Let Iq ⊆ I be the set of jobs
having weight at least wk, where q ∈ {1, . . . , r}. EPPHWF〈h〉 does not change the
schedule of the jobs in Iq when jobs with less weight are removed, so EPPHWF〈h〉,
when scheduling Iq alone, incurs a total (unweighted) waiting time of

∑q
i=1 L(I)|wi .

EPPHWF is a special case of EPPBUSY, so by Corollary 3.2, we have
∑q

i=1 L(I)|wi
≤

1
h−1LOPT (Iq), where LOPT (Iq) is the total waiting time in the optimal (unweighted)
schedule for Iq. When scheduling I, the waiting time incurred by OPT on the jobs in
Iq is

∑q
i=1 LOPT (I)|wi

, which is at least LOPT (Iq). Therefore, for each q = 1, . . . , r,

q∑
i=1

L(I)|wi ≤
1

h− 1

q∑
i=1

LOPT (I)|wi .

By Lemma 15, we transform the above relation of unweighted waiting times to a
weighted version:

r∑
i=1

wiL(I)|wi ≤
1

h− 1

r∑
i=1

wiLOPT (I)|wi .

Note that the former is the weighted waiting time of EPPHWF〈h〉, and
∑r

i=1 wiLOPT

·(I)|wi is the weighted waiting time of OPT. The lemma follows.
Transformation that preserves weighted waiting time. Let weighted SS

be the algorithm Scatter & Squash with Band 1b using EPPHWF instead of EPP-
BUSY. Given an α-speed algorithm A(α), weighted SS transforms A(α) to a τ -
machine algorithm (recall that τ = 7α + 5k − 2, where k ≥ 1). Band 1a and Band 2
have the same performance as before. Specifically, for each job, Band 1a still incurs
a waiting time (and weighted waiting time) the same as A(α), and Band 2 incurs a
waiting time (and weighted waiting time) no more than Band 1 does. By Lemma 16,
the total weighted waiting time incurred by Band 1b, which uses (2k + 1) machines,
is at most 1

2k times that of OPT. Thus, the total weighted waiting time has the same
bound as before.

Lemma 17. Let τ = 7α + 5k − 2 for any integer k ≥ 1. The weighted waiting
time incurred by weighted SS(A(α), τ) is at most 2 times that of A(α) plus 1/k times
that of OPT .

Suppose there is an algorithm A that is O(s)-speed 1
s -competitive for weighted

waiting time, for any s ≥ 1. Then by Lemma 17, we can derive an algorithm that is

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1608 HO-LEUNG CHAN, TAK-WAN LAM, AND KIN-SHING LIU

O(1)-machine 1-competitive for weighted waiting time or, equivalently, for weighted
flow time. However, such an algorithm A is not known to exist. Even if we restrict
our attention to normalized waiting time, we do not know any algorithm that is O(s)-
speed 1

s -competitive and that can be used to derive an O(1)-machine 1-competitive
algorithm for stretch.

Alternative transformation that preserves weighted waiting time. The
rest of this paper shows another way to obtain an algorithm that is O(1)-machine
1-competitive for stretch. In the next section, we will show a weaker result on using
a faster processor to improve the normalized waiting time; specifically, we prove that
an algorithm based on SJF is (1/s)-competitive when using 4m machines that are
8s-speed, where s ≥ 1. To ease our discussion, we say this algorithm is (4-machine,
8s-speed) 1

s -competitive. (Note that this result does not imply an algorithm that is
32s-speed 1

s -competitive for normalized waiting time.2) Furthermore, we can extend
the transformation result in Lemma 17 so that the input algorithm to weighted SS,
denoted A[�, α], uses �m machines that are α-speed, where � ≥ 1 is an integer. In
this case, Band 1a uses �m machines, Band 1b uses (2k + 1)m machines, and Band 2
uses

⌈
7�(α− 1)m + 3

2 (� + 2k + 1)m
⌉

machines. The proof of Lemma 5 can be easily
generalized to show that

• for each job, Band 1a still incurs a weighted waiting time the same as A[�, α]
does, and Band 2 incurs a weighted waiting time no more than Band 1 does;
and

• the total weighted waiting time incurred by Band 1b is at most 1
2k times that

of OPT.
Thus, we have the following result.

Lemma 18. Let τ = 7α� + 5k − 9
2� + 5

2 , where k is any positive integer. The
weighted waiting time incurred by weighted SS(A[�, α], τ) is at most 2 times that of
A[�, α] plus 1/k times that of OPT .

In the next section, we show that, for the special case of normalized waiting time,
SJF is (4-machine, 8s-speed) 1

s -competitive for any s ≥ 1. Choosing s to be 2.2 and
applying Lemma 18 with k = 11, � = 4, and α = 8× 2.2, we obtain an algorithm that
is 533-machine 1-competitive for normalized waiting time, as well as the following
result on stretch.

Corollary 19. Based on SJF, weighted SS gives a 533-machine 1-competitive
algorithm for stretch.

Remark. We conjecture that HDF is (O(1)-machine, O(s)-speed) 1
s -competitive

for weighted waiting time, for any s ≥ 1. If this can be proven, then Lemma 18
can transform HDF to an algorithm that is O(1)-machine 1-competitive for weighted
waiting time, as well as for weighted flow time.

5. Improved analysis of SJF with faster machines. This section proves
that SJF is (4-machine, 8s-speed) 1

s -competitive for normalized waiting time, where
s ≥ 1. The proof is divided into two parts. First, we show how to make use of a
result by Becchetti et al. [6] to show that SJF is (2-machine, 4-speed) 2-competitive
for normalized waiting time. Next, we show a scaling lemma for SJF by which the
waiting time of each job can be reduced by s times if a double number of s times
faster machines are used. That is, for any s ≥ 1, SJF[2�, sα], when compared with
SJF[�, α], reduces the waiting time of every job by at least s times, where s ≥ 1.

2Roughly speaking, if we use a four-times faster machine to simulate four unit-speed machines by
time sharing, the flow time of each job is preserved, but the actual time to process a job is shortened
by four times. Thus, the waiting time is longer than before.

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EXTRA UNIT-SPEED MACHINES FOR FLOW TIME SCHEDULING 1609

Then, the fact that SJF is (2-machine, 4-speed) 2-competitive for normalized waiting
time would imply that SJF is also (4-machine, 8s-speed) 1

s -competitive for normalized
waiting time, for any s ≥ 1.

5.1. SJF and normalized waiting time. First, we observe the following result
by Becchetti et al. [6] on using HDF(4) (i.e., HDF with m 4-speed machines) to
schedule jobs with arbitrary weights. Below the notation HDF (or any algorithm) is
overloaded to mean the algorithm itself as well as the schedule defined by HDF.

Lemma 20 (see [6]). Let I be a job sequence with arbitrary weights. Let A be
any schedule of I using m unit-speed machines. Consider the two schedule A and
the schedule of I in accordance with HDF(4). At any time t, the total weight of the
remaining jobs in HDF(4) is at most two times that of A.

The above lemma implies that in the unweighted setting, at any time, the number
of remaining jobs in SJF(4) is at most two times that of A. Furthermore, we have the
following result.

Lemma 21. SJF is (2-machine, 4-speed) 2-competitive for (unweighted) waiting
time.

Proof. Consider any job sequence I. Let A be any schedule of I using m unit-speed
machines. At any time t, let Ut(SJF[2, 4]) be the number of jobs remaining in SJF[2, 4],
and define Ut(SJF(4)) and Ut(A) similarly. Then, Ut(SJF[2, 4]) ≤ Ut(SJF(4)) ≤
2 × Ut(A). Note that SJF[2, 4] is using 2m machines. At time t, if there is a job
waiting in SJF[2, 4], then Ut(SJF[2, 4]) > 2m, and the number of jobs waiting is
Ut(SJF[2, 4]) − 2m ≤ 2(Ut(A) −m). Thus, at any time, the number of jobs waiting
in SJF[2, 4] at most two times of that of A, and the lemma follows.

Intuitively, SJF gives priority to smaller jobs, and it is competitive not only for
the total waiting time, but also for the waiting time of small jobs only. This allows
us to derive inductively a bound of the waiting time. Then, using Lemma 15, we
transform this bound to a bound on the total normalized waiting time. Details are as
follows.

Lemma 22. SJF is (2-machine, 4-speed) 2-competitive for normalized waiting
time.

Proof. Let I be any job sequence, and let w1 < w2 · · · < wr be the distinct job sizes
in I. Consider the schedule of I in accordance with SJF[2, 4], and let L(I)|wi be the
total waiting time of jobs with size exactly wi. Denote OPT be the optimal algorithm
using m unit-speed machines, and define L′(I)|wi similarly for OPT . Consider any
q ∈ {1, 2, . . . , r}. Let Iq be the job sequence including only jobs in I with size w1, w2,
. . . , or wq. Since SJF does not change the schedule of a job due to other jobs with
larger size,

∑q
i=1 L(Iq)|wi

(i.e., the total waiting time incurred by SJF[2, 4] on Iq)
is exactly equal to

∑q
i=1 L(I)|wi

. By Lemma 21, the total waiting time incurred by
SJF[2, 4] is at most two times the total waiting time incurred by any schedule of Iq on
m unit-speed machines. Thus,

∑q
i=1 L(I)|wi =

∑q
i=1 L(Iq)|wi ≤ 2 ×

∑q
i=1 L

′(I)|wi ,
where q = 1, 2, . . . , r.

Again, we make use of Lemma 15 to turn the above result into a weighted one:∑r
i=1

1
wi

Ls(I)|wi
≤ 2

∑r
i=1

1
wi

Lo(I)|wi
, or, equivalently, the normalized waiting time

of SJF(2, 4) is at most two times that of OPT .

5.2. The scaling lemma. This section shows that the waiting time incurred
by SJF can be scaled down with increasing speed. Precisely, we compare SJF[�, α]
and SJF[2�, cα], where c ≥ 1 is a real, and we show that the waiting time of each job
decreases by c times (note that this result is much stronger than bounding the total
waiting time). More interestingly, this result is true for the more general algorithm

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1610 HO-LEUNG CHAN, TAK-WAN LAM, AND KIN-SHING LIU

HDF (see the lemma below). Note that the density of a job, defined as the ratio
of its weight to its processing time, is fixed throughout the life span of a job. HDF
schedules jobs with highest densities (we assume that ties are broken by job IDs).
SJF is identical to HDF when all jobs are assumed to have a unit weight.

Lemma 23. Consider any job sequence I with arbitrary weights. For each job J
in I, denote the waiting time of J incurred by HDF[2�, cα] and HDF[�, α] as L(2,c)(J)

and L(1,1)(J), respectively. Then L(2,c)(J) ≤ 1
cL(1,1)(J).

Proof. Denote S1(I) and S2(I) as the schedule of a job sequence I in accordance
with HDF[�, α] and HDF[2�, cα], respectively. By definition of HDF, at any time,
every job has less remaining work in HDF[2�, cα] than in HDF[�, α], and if a job is
waiting in HDF[2�, cα], then the job must also be waiting in HDF[�, α].

Consider a job J in I. Assume that J is completed at time z(J) in S1(I), and
hence no later than z(J) in S2(I). We call jobs in I that have higher densities than J
the higher-priority jobs. At any time, S1(I) (as well as S2(I)) is said to be busy if all
available machines are running some higher-priority jobs. Note that at any time t in
[r(J), z(J)], J is waiting in S1(I) if and only if S1(I) is busy. So the waiting time of
J in S1(I) is the total length of the busy periods of S1(I) during [r(J), z(J)]. Denote
these busy periods λ1, λ2, . . . , λh.

Next, we consider the schedule S2(I). Suppose that J is waiting in S2(I) during
a time interval ρ. Note that ρ is a busy period in S2(I); furthermore, J is also waiting
in S1(I) during ρ, and ρ is a subinterval of some busy period λ of S1(I). Therefore, to
upper bound the waiting time of J in S2(I), it suffices to consider each busy period λ
of S1(I) separately. Below we show that the busy period of S2(I) within λ has a total
length at most a fraction 1

c of λ (see the lemma below). Then we can conclude that
the waiting time of J in S2(I), which is the total length of the busy periods within
λ1, λ2, . . . , λh, is at most 1

c (|λ1|+ |λ2|+ · · ·+ |λh|) or, equivalently, 1
c times the waiting

time of J in S1(I). Lemma 23 follows.

It remains to prove the following lemma.

Lemma 24. Let λ = [t1, t2] be a busy period in S1(I). Denote the busy periods
of S2(I) that are within [t1, t2] as ρ1, ρ2, . . . , ρg, and let y =

∑
1≤i≤g |ρi| be their total

length. Then y ≤ 1
c |λ|.

Proof. Let λ = [t1, t2]. The work scheduled by S1(I) during λ, denoted by W ,
has a total size exactly �mα|λ|. Let R be the high-priority jobs remaining in S1(I)
immediately after t2. Note that R contains at most �m− 1 jobs as S1(I) is not busy
immediately after t2.

During the busy periods ρ1, ρ2, . . . , ρg, the total amount of work processed in S2(I)
is 2�mcαy; on the other hand, the high-priority work available to S2(I) is limited. In
particular, S2(I) can process at most all the work W and some of the work of R (that
are processed beyond t2 in S1(I)). The former has a total amount of �mα|λ|, and the
latter is bounded by cαy|R| < cαy�m. Thus, we have

2�mcαy < �mα|λ| + cαy�m

or, equivalently, y ≤ |λ|/c.
Lemma 23 implies that when comparing HDF[2�, cα] against HDF[�, α], the weighted

waiting time, flow time, and weighted flow time of each job decrease by c times. In
particular, together with Lemma 22, Lemma 23 gives the main result of this section.

Corollary 25. SJF is (4-machine, 8s-speed) 1
s -competitive for normalized wait-

ing time, where s ≥ 1 is any real.

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

EXTRA UNIT-SPEED MACHINES FOR FLOW TIME SCHEDULING 1611

Proof. By Lemma 22, SJF is (2-machine, 4-speed) 2-competitive for normalized
waiting time. By Lemma 23, if we double the number of machines and increase the
speed 2s times, then the competitive ratio is reduced to 1/s, where s ≥ 1.

Lemma 23 has another implication. It is known that HDF is 4-speed 2-competitive
for weighted flow time [6]. Again, if we double the number of machines and increase
the speed 2s times for any s ≥ 1, then the competitive ratio is reduced to 1/s.

Lemma 26. Let s ≥ 1 be any real number. HDF is (2, 8s)-machine-speed (1/s)-
competitive for weighted flow time.

The above result also implies an algorithm that is 16s-speed (1/s)-competitive
for weighted flow time (by simulating HDF(2, 8s) using time-sharing).

6. Conclusion. This paper serves as the first step in understanding how extra-
machine analysis is related to extra-speed analysis, and how extra machines can pro-
vide 1-competitive scheduling for minimizing flow time and stretch. There are several
interesting problems to be addressed. We do not have a similar result for weighted
flow time. Unlike the algorithm IMD [13], our new algorithms incorporate SRPT
or HDF, and they are migratory in nature and do not allow immediate dispatch.
It is interesting to investigate nonmigratory algorithms with similar performances.
Another important direction is to minimize the Lp norm of flow time and stretch
[5, 13]. Note that Chekuri et al. [13] have extended (1+ ε)-speed (or (1+ ε)-machine)
O(1 + 1/ε)-competitive results for flow time and stretch to the Lp norm.

REFERENCES

[1] N. Avrahami and Y. Azar, Minimizing total flow time and total completion time with imme-
diate dispatching, in Proceedings of SPAA, ACM, New York, 2003, pp. 11–18.

[2] B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev, Minimizing the flow time without
migration, in Proceedings of STOC, ACM, New York, 1999, pp. 198–205.

[3] N. Bansal, On minimizing the total flow time on multiple machines, in Proceedings of SODA,
ACM, New York, SIAM, Philadelphia, 2004, pp. 572–574.

[4] N. Bansal and K. Dhamdhere, Minimizing weighted flow time, in Proceedings of SODA,
ACM, New York, SIAM, Philadelphia, 2003, pp. 508–516.

[5] N. Bansal and K. Pruhs, Server scheduling in the Lp norm: A rising tide lifts all boat, in
Proceedings of STOC, ACM, New York, 2003, pp. 242–250.

[6] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs, Online weighted
flow time and deadline scheduling, in Proceedings of RANDOM-APPROX, Springer-
Verlag, Berlin, 2001, pp. 36–47.

[7] L. Becchetti, S. Leonardi, and S. Muthukrishnan, Scheduling to minimize average stretch
without migration, in Proceedings of SODA, ACM, New York, SIAM, Philadelphia, 2000,
pp. 548–557.

[8] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan, Flow and stretch metrics for
scheduling continuous job streams, in Proceedings of SODA, ACM, New York, SIAM,
Philadelphia, 1998, pp. 270–279.

[9] M. A. Bender, S. Muthukrishnan, and R. Rajaraman, Improved algorithms for stretch
scheduling, in Proceedings of SODA, ACM, New York, SIAM, Philadelphia, 2002, pp.
762–771.

[10] P. Berman and C. Coulston, Speed is more powerful than clairvoyance, in Proceedings of
the 6th Annual SWAT, Stockholm, Sweden, 1998, pp. 255–263.

[11] H. L. Chan, T. W. Lam, and K. K. To, Non-migratory online deadline scheduling on mul-
tiprocessors, in Proceedings of SODA, ACM, New York, SIAM, Philadelphia, 2004, pp.
970–979.

[12] W. T. Chan, T. W. Lam, K. S. Liu, and P. Wong, New resource augmentation analysis of
the total stretch of SRPT and SJF in multiprocessor scheduling, in Proceedings of MFCS,
Springer-Verlag, Berlin, 2005, pp. 236–247.

[13] C. Chekuri, A. Goel, S. Khanna, and A. Kumar, Multi-processor scheduling to minimize
flow time with ε resource augmentation, in Proceedings of STOC, ACM, New York, 2004,
pp. 363–372.

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1612 HO-LEUNG CHAN, TAK-WAN LAM, AND KIN-SHING LIU

[14] C. Chekuri, S. Khanna, and A. Zhu, Algorithms for minimizing weighted flow time, in
Proceedings of STOC, ACM, New York, 2001, pp. 84–93.

[15] J. Du, J. Y. T. Leung, and G. H. Young, Minimizing mean flow time with release time
constraint, Theoret. Comput. Sci., 75 (1990), pp. 347–355.

[16] J. Edmonds, Scheduling in the dark, in Proceedings of STOC, ACM, New York, 1999, pp.
179–188.

[17] B. Kalyanasundaram and K. Pruhs, Speed is as powerful as clairvoyance, J. ACM, 47 (2000),
pp. 617–643.

[18] C. Y. Koo, T. W. Lam, T. W. Ngan, and K. K. To, Extra processors versus future informa-
tion in optimal deadline scheduling, in Proceedings of SPAA, ACM, New York, 2002, pp.
133–142.

[19] K. R. Baker, Introduction to Sequencing and Scheduling, Wiley, New York, 1974.
[20] S. Leonardi and D. Raz, Approximating total flow time on parallel machines, in Proceedings

of STOC, ACM, New York, 1997, pp. 110–119.
[21] J. McCullough and E. Torng, SRPT optimally utilizes faster machines to minimize flow

time, in Proceedings of SODA, ACM, New York, SIAM, Philadelphia, 2004, pp. 343–351.
[22] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. Gehrke, Online scheduling to min-

imize average stretch, in Proceedings of FOCS, IEEE Computer Society, Los Alamitos,
CA, 1999, pp. 433–442.

[23] C. A. Phillips, C. Stein, E. Torng, and J. Wein, Optimal time-critical scheduling via
resource augmentation, in Proceedings of STOC, ACM, New York, 1997, pp. 140–149.

[24] K. Pruhs, J. Sgall, and E. Torng, Online scheduling, in Handbook of Scheduling: Algo-
rithms, Models and Performance Analysis, J. Leung, ed., CRC Press, Boca Raton, FL,
2004, pp. 15-1–15-41.

D
ow

nl
oa

de
d

03
/2

5/
14

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

