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Abstract

This paper studies an urban growth model where learning through personal

contacts could be more effective in a denser locale, whereas the effectiveness of

learning through impersonal means of communications depends principally on

the technology of communications rather than on the locale in which learning

takes place. As a result of advances in communications technology, cities would

be larger, and workers would spent more time on learning through personal

contacts but may cut time on impersonal learning if the two kinds of learning

investment are complements. Otherwise, cities could become smaller, while

workers would spend more time on impersonal learning at the expense of time on

learning through personal contacts. In a multi-sector economy, urban industrial

diversity tends to increase or fall together with city size.
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1. INTRODUCTION

While internal and external increasing returns to scale in production, forward and

backward linkages, and the savings of transportation costs must all have paid impor-

tant roles for the rise and continuing prominence of the modern city, many writers

have argued that it is the role of the city as a hotbed for learning spillovers that

constitutes the city’s primary function in the service economy of the latter part of

the 20th century and the time to come.1 Indeed since Marshall (1890), economists

have emphasized how proximity fosters frequent interactions among workers — an

important ingredient for the growth and diffusion of knowledge.2

We may learn in solitude by reading books and other printed materials, and in

recent times and increasingly, by accessing information available in electronic medi-

ums. How well we learn through such impersonal means of communications probably

does not depend on where the learning takes place, but principally on the ease with

which the knowledge can be accessed as determined by the technology of commu-

nications. We may also learn through personal contacts by observing how others

perform certain tasks, by taking instructions from more experienced colleagues, and

by discussions with others sharing common interests. This paper studies an urban

growth model where the engine of growth is human capital investment through time

spent on learning as in Lucas (1988). The point of departure is that I distinguish

between learning through personal contacts and learning through impersonal means
1See for instance Chinitz (1999), Swann (1999), Leamer and Storper (2001), and Glaeser and

Kohlhase (2004).
2Noteble among recent empirical work that study the link between agglomeration and learning

include Glaeser and Maré (2001) and Audretsch and Feldman (1996). Jaffe, Trajtenberg and Hen-

derson (1992), using patent citation data, find that spillovers appear to be geographically bounded.

Thompson (2006) finds that the results of Jaffe et al. survive amidst a more rigorous identification

strategy.
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of communications. The basic hypothesis is that learning through personal contacts

could be more effective in a denser urban setting because it allows for more frequent

and varied interactions among the inhabitants, whereas the effectiveness of learning

through impersonal means of communications should not differ across locations but

is determined, by and large, by the technology of communications.

The defining difference between this paper and previous papers on urban growth,

that include for instance Eaton and Eckstein (1997), Black and Henderson (1999),

and Rossi-Hansburg andWright (2007),3 is that agglomeration in the present model is

solely for facilitating learning investment, whereas it has been conventional in dynamic

urban models to assume that the agglomeration economies are production economies

that raise the contemporaneous productivity of firms. No doubt, previous authors

recognize that the major channel through which agglomeration raises productivity

is that it facilitates various kinds of learning among the city’s inhabitants from one

another.4 The simple assumption that agglomeration helps raise static productivity

is, by all means, merely a reduced form specification of a more elaborated setting

in which the higher productivity results from various kinds of learning spillovers.

The virtue of proceeding with assuming static production externalities, instead of

starting from first principle, is that it results in a highly tractable setting to facilitate

the analysis of a multitude of questions pertaining to urban structure, growth, and

efficiency.

Nevertheless, an explicit analysis of how agglomeration helps workers learn better

in an urban growth model could in itself yield valuable insights. The modeling of

the distinction between personal and impersonal learning investments in particular
3The survey in Berliant and Wang (2004) of the literature provides an interesting perspective in

relating the literature to the tradition of neoclassical growth models.
4Durnaton and Puga (2004) survey models of the microfoundation of agglomeration economies.

Fujita and Thisse (2002, chapter 6) study an explicit model of the interactions among workers in a

city.
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provides an ideal setting to analyze the tropical question of the future of cities amidst

the vast improvements in information and communications technology (ICT) in the

recent past and the expected continuing advances in the foreseeable future. The

answer depends, rather intuitively, on the elasticity of substitution between the two

kinds of learning investment. In case the elasticity is below unity, so that the two

kinds of investment are complements, advances in communications technology that

help the worker make better use of her time on impersonal learning tend to raise

the payoff of time spent on learning through personal contacts. As a result, there

would be greater agglomeration in equilibrium. In case the elasticity is above unity,

so that the two kinds of investment are substitutes, workers would first for sure find

it optimal to raise impersonal learning investment. The increase could possibly be

partially at the expense of time on personal learning investment if the latter may be

easily substituted away. In equilibrium, cities could become smaller in size and more

numerous.

In an extension to the basic model, I turn to study how urban industrial diversity

and city size are jointly determined in a multi—sector economy. In this environment,

there can be one, two, or just any number of sectors in a city. Adding a sector to a

city has the benefit of enriching the city’s workers’ learning experiences by allowing

the city’s workers to learn from workers in that additional sector through personal

contacts. The downside is that with the city’s population spread among one more

sector, each sector included in the city would be smaller in size. Then the city’s

workers could only learn with diminished effectiveness from workers in each such

sector because of the diminished concentration of workers of the sector in the city.

In general, I find that, following advances in communications technology, if the city

becomes larger, it would also be more diversified, and vice versa.

This paper is closely related to Gasper and Glaeser (1998) in its focus on the

effects of the advances in ICT on the future of city. While Gasper and Glaeser
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restrict each agent in their model to communicate either through the “telephone” or

through personal contacts, I give workers in the present model the choice of investing

in both personal and impersonal learning investments. Further, while in Gasper and

Glaeser, whether the city would increase in size following advances in communications

technology seems to depend on the distribution of ideas among agents, my answer to

the same question hinges on the nature of the learning technology.

Urban industrial diversity has been an important topic of research. Duranton and

Puga (2000) and Abdel-Rahman and Anas (2004) survey this large literature. In ad-

dition, Duranton and Puga (2001) argue that young and innovative firms could find

the large and diversified city, because of the availability of a wide variety of intermedi-

ate inputs, an attractive place to experiment. Pascal and McCall (1980) explores the

role of path dependence in explaining why young and presumably innovative firms

would choose to follow the examples of earlier and more successful entrants to locate

in the large and diversified city. Berliant, Reed and Wang (2006) argue that interac-

tions among workers would be most useful when the knowledge possessed by a pair

of workers is not too alike or too different.

The rest of the paper is organized as follows. The next section studies the basic one—

sector model. In section 3, I extend the analysis to study the joint determination of

equilibrium urban industrial diversity and city size in the multi—sector model. Section

4 contains discussions on the role played by industrial policies as coordinating devices

and how equilibrium differs from the social optimum. Section 5 concludes. Proofs

that only involve routine calculations are omitted for brevity; the less straightforward

proofs can be found in the appendix.
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2. ANALYSIS

2.1 Preference

The economy is populated by a continuum of household—workers, each of whom

has the same preference, given by

U =
∞X
t=0

δt ln ct,

where δ < 1 is the subjective discount factor and ct the household’s consumption in

period t. Utility maximization is subject to the usual intertemporal budget constraint

that equates the household’s wealth to the present value of the household’s consump-

tion over time. Let rt be the interest rate. The household’s consumption plan then

satisfies the familiar optimal consumption growth condition

ct+1
ct

= δ [1 + rt+1] (1)

for logarithmic preferences.

2.2 The spatial structure of the city and commuting

I assume the conventional two—dimensional circular city. Housing density is as-

sumed fixed at 1, and the cost of housing development is normalized to 0. All workers

must commute to the city center for employment. In practice, both privately—supplied

inputs that include the commuter’s time, the auto, the gasoline, etc. and publicly—

supplied inputs that include the mass transit system, highways, traffic lights, and

other related public capitals are essential inputs to urban transportation. In assum-

ing that the worker spends a certain amount of time and/or uses up a certain number

of units of her own output to commute one unit distance, the typical urban model

emphasizes the roles played by privately—supplied inputs, while completely abstracts

from the roles played by publicly—supplied inputs. In this paper, I choose to focus
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on publicly—supplied inputs instead. Specifically, I assume that a worker who wishes

to commute a distance of d must purchase dα units of “urban traveling” supplied by

the public sector, for some parameter α > 0. Perhaps this setup best describes where

commuting is by public transportation. But it could apply to commuting by auto as

well, where the traveling uses some tolled highways, bridges, and tunnels.

In any case, if the transit authority charges some amount z for each unit of traveling

service rendered, and if the border of the city extends to a distance of b from the city

center, the equilibrium housing rent function becomes h (d) = z (bα − dα) , whereas
the worker’s location cost, defined as the sum of housing rent and commuting expense,

is equal to zbα. On the supply side, assume that to provide one unit of urban traveling

requires ω units of labor. In turn, to successfully hire a unit of labor, the transit

authority has to pay for the value of the worker’s outside option — the production of

the consumption good. Thus if a worker is able to produce A units of output per unit

of time spent on good production, she would be just willing to work for the transit

authority for a wage rate equal to A, and that is how much the transit authority

would pay the worker.

The two unusual elements in this setup :

1. monopoly supply of urban transportation by some transit authority,

2. non—linear commuting expense,

both seem to make the analysis more complicated than in their absence. But they do

play important roles in guaranteeing the existence of a symmetric constant growth

equilibrium under relatively simple conditions, in which the economy would not de-

generate into a single—city economy, and in which the population of each city is

stationary over time.
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2.3 Production and learning

A worker has a time—endowment of 1 in each period of time and allocates it among

learning, the production of the consumption good, and employment in the urban

transportation sector. Let At denote the worker’s productivity; i.e., output per unit

of time spent on good production. Since the transit authority would pay a wage rate

just equal to the worker’s productivity in good production, no matter how she divides

time between production and employment in the transportation sector, the worker’s

income is equal to

yt = At (1− xt)

if xt is the time spent on learning.

Suppose the worker stays in some city i. Given that the worker spends xt units

of time on learning, the worker’s productivity (human capital) is assumed to evolve

according to

At+1 = At + kitxt, (2)

where kit denotes the productivity of time spent on learning in city i. Let τ it be

the lump—sum subsidy the worker receives from staying in city i and β = 1
1+r

the

discount factor. The worker chooses xt to maximize the present value of the stream

of net income:

Vit (At) = max
xt
{At (1− xt)− zitbαit + τ it + βVit+1 (At+1)} , (3)

subject to (2), and taking as given the time paths for kit, zit, bit, and τ it. The first

order condition for an interior optimum reads

−At
kit
+ β

Ã
1− xt+1 + At+1

kit+1

!
= 0. (4)
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2.4 Agglomeration economies — learning spillovers

Consider first how much the worker can expect to gain from time spent on learning

through impersonal means of communications. How much there is to learn and how

well a worker can learn should only depend on the quality of the learning materials

and the ease with which the materials can be accessed. If the economy’s knowledge

capital stock may be summarized by its average human capital — At, the productivity

of impersonal learning — by how much the worker’s human capital is augmented per

unit of time spent on the activity, may be most simply modeled by Atη, for some η

that measures the efficacy of the technology of communications.

Similarly, how much there is to learn through personal contacts should only depend

on what those the worker would come into contact with know — the quality of contacts

(Jovanovic and Rob (1989), Berliant et al. (2006)). Moreover, the productivity of

time spent on the activity would also depend on the number of contacts the worker

may make within a certain time period, and the worker could make many more

such contacts in a larger city (Glaeser (1999)). If the quality of contacts can be

summarized by the city’s average human capital — Ait, it is simplest to assume that

the productivity of time spent on personal learning is given by Aitf (nit), where nit is

city i’s population and f (n) some continuously differentiable function that satisfies

f 0 (n) > 0 for n ≥ 0. This formulation assumes that the city’s average human capital
is a sufficient statistic for the entire distribution of human capital in the city, and that

learning productivity is multiplicatively separable in the average quality of contacts

and a function that gives the frequency of contacts. Granted that such assumptions

are not unduly implausible, the formulation could be a useful first step to explore the

aggregative implications of how the two kinds of learning investment may interact on

the determination of equilibrium city size.

In all, by how much the worker’s human capital increases in the given period is
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assumed to be given by

∆it =

Ãh
Aitf (nit) x

P
t

i θ−1
θ +

h
Atηx

I
t

i θ−1
θ

! θ
θ−1
, (5)

where θ > 0 is the elasticity of substitution between the two kinds of learning invest-

ment, and xPt and x
I
t denote, respectively, the time spent on learning through personal

interactions and impersonal means, which would add up to xt− the aggregate time
investment on learning :

xt = x
P
t + x

I
t . (6)

Maximizing (5) subject to (6) yields

xPt = xt

³
Aitf (nit)

´θ−1
³
Aitf (nit)

´θ−1
+
³
Atη

´θ−1 , (7)

xIt = xt

³
Atη

´θ−1
³
Aitf (nit)

´θ−1
+
³
Atη

´θ−1 , (8)

if the second order condition that θ < 2 is met, and where

∂xPt
∂η

>
<
0⇔ θ <

>
1. (9)

That is, the two learning technologies are complements in case θ < 1 but substitutes

otherwise.

In turn, substituting (7) and (8) into (5) yields

∆it =
µh
Aitf (nit)

i ε−1
ε +

h
Atη

i ε−1
ε

¶ ε
ε−1
xt ≡ kitxt, (10)

where

ε =
1

2− θ
. (11)

In (10), kit may then be taken as the overall productivity of learning investment in

10



city i. It is convenient to normalize f (0) = 1 and write5

At
³
1 + η

ε−1
ε

´ ε
ε−1 ≡ Atκ (12)

as the productivity of learning through impersonal means of communications alone.

In this case, kit starts out equal to Atκ > 0 at nit = 0, and is increasing in nit

thereafter if Ait ≥ At. Finally if Ait = At, (10) specializes to

kit = At

µ
f (nit)

ε−1
ε + η

ε−1
ε

¶ ε
ε−1 ≡ Atk (nit) . (13)

Because I would just be working with the reduced form learning technology in (13)

hence, I should from now on state conditions on ε rather than on θ. This would

not cause problems in the interpretations of the conditions at all since by (11) , the

condition that ε > (<) 1 is strictly equivalent to the condition that θ > (<) 1. In

this regard, assume that

k00 (n) < 0⇔ −k (n) 1−εε η
ε−1
ε
f 0 (n)2

εf (n)
+ f 00 (n) < 0, (14)

for n ≥ 0. This condition, which helps guarantee the second order conditions for max-
imization are met in the analysis to follow, is weaker than assuming strict concavity

on f (n) ; it would hold even if f 00 (n) ≥ 0, as long as ε is not too large.

2.5 The market for city

There is an unlimited number of homogenous sites in the economy where cities may

be developed. Rural land is in excess supply and therefore a free good. Following
5Alternatively, one might have considered normalizing f (0) = 0. In this case and if ε ≤ 1, kit = 0

at nit = 0. Underlying this normalization is then the presumption that, in case ε ≤ 1, personal
(as well as impersonal) learning is an essential input to human capital investment. It would be

explained in note 10 that how the existence of equilibrium cannot be guaranteed with relatively

simple conditions, and how equilibrium, given existence, can never be unique under this seemingly

more natural normalization.
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a long tradition in urban economics, cities are assumed to form in an economywide

land market by profit—maximizing property developers (or alternatively autonomous

city governments), where each city is run by a single developer, who collects rents

and specifies urban population.6 The city developer in the present model also hires

labor to supply urban transportation service to the city’s households.

Suppose all workers in the economy start out at the same level of productivity,

equal to At say. Consider some city i. If the city’s population in period t is nit, its

border would extend to bit =
q
nit/π. Since the sum of rent and commuting charge

each household pays the city developer is equal to zitbαit, the developer’s gross revenue

is nitzitbαit = zitn
1+α/2
it /πα/2. To earn this revenue, the developer suppliesZ bit

0
2πs1+αds =

2

2 + α

n
1+α/2
it

πα/2

units of urban transportation at a unit cost of ωAt. The developer may also choose to

subsidize each household in the city for an amount equal to τ it. In sum the developer’s

net revenue is

Πit = max
{nit,zit,τ it}


µ
zit − 2ωAt

2 + α

¶
n
1+α/2
it

πα/2
− nitτ it

 , (15)

where the maximization is subject to the constraint that the households are at least

as well off as staying elsewhere in the economy. To specify this constraint, let Vt (At)

be the present value of income a worker can earn by staying in the representative

city. If in period t, the worker stays in city i, and then moves to and stays in the

representative city thereafter, the present value of income is

eVit (At) = max
xt

(
At (1− xt)− zit

µ
nit
π

¶α/2

+ τ it + βVt+1 (At+1)

)
.

The maximization in (15) is then subject to

eVit (At) ≥ Vt (At) .
6The tradition can be traced to Henderson (1974). See the survey of the literature in Abdel-

Rahman and Anas (2004).
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2.6 Symmetric constant growth equilibrium

Combining the first order conditions of (15) with respect to nit and τ it and the

zero—profit condition for city formation yields7

xk (n)1/ε−1 f (n)−1/ε f 0 (n) =
αω

2 + α

nα/2−1

πα/2
, (16)

where, without loss of generality, I have dropped the city and time subscripts. This

is the equilibrium condition for n in the symmetric constant growth equilibrium —

the equilibrium that emerges when all workers in the economy happened to start out

with the same level of productivity in some prior period. With production exhibiting

constant returns and learning displaying constant growth, there can be no transition

dynamics in the symmetric equilibrium.

The condition (16) admits a very intuitive interpretation in that it is just the first

order condition of

max
n

(
At (1− x)− 2ωAt

2 + α

nα/2

πα/2

)
(17)

subject to

At+1 = At +Atk (n)x, (18)

for some given At+1, where the maximand in (17) is output per capita net of the

resources used up in commuting. In this connection, the right side of (16) denotes the

cost of increasing agglomeration; i.e., by how much commuting expense per capita

increases per unit increase in n, normalized byAt. The left side measures the returns to

increasing agglomeration, again normalized by At; i.e., by how much current period

per capita output increases per unit increase in n, holding constant outputs in all

future periods, for which a necessary condition is that At+1 in (18) stays at the given

level.
7zit and τ it cannot be determined separately. But, given nit, together they satisfy τ it =³
zit − 2ωAt

2+α

´
n
α/2
it

πα/2
by the zero—profit condition.
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The first order condition (16) is also sufficient if (17) (with x substituted out via

(18)) is strictly concave. Otherwise, the agglomerative force could dominate the

dispersion force at all levels of n to result in the entire economy collapsing into a

single city. By (14) , the left side of (16) is diminishing in n. If α > 2, the marginal

cost of agglomeration, on the right side of (16) , is strictly increasing in n, and the

second order condition is guaranteed to hold. To simplify analysis, I shall henceforth

restrict attention to where α > 2.8 Then it is straightforward to verify that there exists

a unique solution to (16) for any given x.9 Further by straightforward differentiation:

Lemma 1 An increase in η raises the marginal returns to agglomeration (the left

side of (16)) if and only if ε < 1.

To proceed, rewrite (16) as

xD (n) =
αωnα/2−1k (n)1−1/ε f (n)1/ε

(2 + α) πα/2f 0 (n)
(19)

— a monotone increasing function that starts out equal to 0 and becomes unbounded

as n becomes large. This is the inverse of a function that gives the developer’s optimal

choice of n as a function of x. Since by (16), the marginal returns to agglomeration

are increasing in x, xD (n) should only be a strictly increasing function.

To complete the characterization of equilibrium, I return to (4) , which characterizes

the time path for xt in the worker’s optimum. With kit = Atk (n), the equation

simplifies to

(1− x) k (n) = r, (20)
8Where there is linear commuting; i.e., α = 1, the marginal cost is diminishing in n. Then the

second order condition is met only if the marginal returns diminish at a faster rate. This requires

either a small ε or a rapidly diminishing f 0 (n) . For example, if f (n) = anφ, a sufficient condition

is that φ < 1/2.
9The left side is positive at n = 0 given that f 0 (0) > 0, whereas the left side is equal to 0.

Thereafter the right side increases without bound, while the left side declines.
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where r = 1−β
β
. From (1) , ct+1/ct = δ (1 + r) , and in the constant growth equilibrium,

ct+1/ct = At+1/At = 1 + k (n) x. Hence

r =
1 + k (n)x− δ

δ
. (21)

Combine (20) and (21) to obtain

xW (n) =
1

1 + δ

"
δ − 1− δ

k (n)

#
. (22)

Lemma 2 (a) xW (n) is a strictly concave and increasing function, bounded by

xW (n) <
δ

1 + δ
, (23)

and positive over n ≥ 0 if
δ ≥ 1

κ+ 1
. (24)

(b) ∂xW/∂η > 0.

The function xW (n) denotes the worker’s optimal investment in equilibrium. Where

an increase in either n or η raises learning productivity, the worker would choose a

larger x to follow.

The constant growth symmetric equilibrium with positive learning investment and

non—zero city size is a n > 0 that solves xD (n) = xW (n) . By construction, any such

equilibrium is a free—mobility equilibrium since workers earn the same discounted

lifetime income in any cities in the economy.

Proposition 1 Equilibrium with positive learning investment and non—zero city size

exists if (24) holds. In addition, if

δ ≥ 2

κ+ 2
, (25)

the equilibrium is unique.
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Fig. 1. Existence and uniqueness of equilibrium

Figure 1 plots the two functions: xD (n) and xW (n) . Since xD (0) = 0 and is

increasing without bound thereafter, while xW (0) > 0 if (24) holds, and is likewise

increasing but strictly concave and bounded by (23), the two functions in figure 1

must intersect at least once. Further, the appendix shows that if (25) holds, the two

functions may intersect just once.10

2.7 City size and improvements in communications technology

Given the existence and uniqueness of equilibrium, I may now move on to study

how n and x behave in equilibrium with respect to advances in the technology of

impersonal learning.
10Had we chosen to normalize f (0) = 0, and in case ε ≤ 1, κ ≡ k (0) = 0. In this case, (24) and

(25) can never be met since δ < 1. Indeed, xW (n) only becomes positive for sufficiently large n if

k (n) starts out equal to 0. Then the analysis in figure 1 suggests that, given existence, there must

be at least two equilibria, with xW strictly concave and bounded but xD unbounded.
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Proposition 2 An increase in η (a) raises equilibrium city size n if ε ≤ 1 and (b)
always results in greater learning investment x.

An increase in η exerts two kinds of influence on equilibrium city size. First, insofar

as the increase in η is an increase in learning productivity, by lemma 2, the worker

raises investment, which in turn raises the payoff to increasing agglomeration for the

developer. Equilibrium city size tends to increase as a result. Second, for a given

level of investment, by lemma 1, the marginal returns to agglomeration increase if

the two kinds of learning are complements. Thus in case ε ≤ 1, improvements in the
technology of communications unambiguously results in increasing agglomeration.

But in case ε > 1, the marginal returns to agglomeration decline at each level of

investment. If this effect dominates, there could well be declining agglomeration

in equilibrium. Even though the condition that ε ≤ 1 is a sufficient condition for

the conclusion of the proposition but not necessary, in various numerical analyzes, I

find that when the condition fails to hold, the conclusion is indeed reversed if η is

sufficiently large to begin with.

In case ε ≤ 1, the two effects of an increase in η both serve to induce the worker to

increase investment. First the increase in η raises learning productivity directly. The

equilibrium increase in n that follows raises learning productivity even further. Then

the worker must find it optimal to increase investment. In case ε > 1, the indirect

effect could be negative though since the possible decline in n tends to lower learning

productivity. A more careful analysis in the appendix establishes that the direct

positive effect should always dominate. The reasoning is straightforward. By (22), x

could fall if and only if learning productivity k (n) has fallen. The assumed increase in

η represents an exogenous improvement in the learning technology, which may lead to

an equilibrium decline in n in case ε > 1. The effect of such an equilibrium response

should not more than offset the effect of the initial exogenous change that has caused

the decline in the first place.
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Behind the simple conclusion that improvements in the technology of communica-

tions always result in greater overall learning investment are important differences in

how the increase in investment comes about between the two regimes of whether ε is

below or above 1.

Proposition 3 (a) In case ε ≤ 1, personal learning investment xP is increasing in
η if

f 0 (n)2

f (n)
− f 00 (n) ≥ 0. (26)

(b) In case ε ≥ 1, impersonal learning investment xI is increasing in η. Further

in case ε > 1, personal learning investment xP is decreasing in η if in equilibrium

dn/dη < 0.

When the two kinds of learning investment are not substitutes (ε ≤ 1), there would
be a larger city to follow the increase in η, in which case the worker should only find it

optimal to raise xP .11 When the two kinds of investment are relatively substitutable

(ε ≥ 1), after the same exogenous change, perhaps at the expense of xP , the worker
would first for sure find it optimal to increase xI . If there is also a smaller city in

equilibrium, the increase in xI is indeed partially achieved by reducing time on xP .

One case not covered by the proposition is how xI should behave in case ε <

1. There should be two effects. The improvement in the technology of impersonal

learning tends to induce the worker to increase xI . In the mean time, given the two

kinds of investment are complements, the worker also wishes to raise xP . This increase

in xP could possibly be at the expense of xI . Figure 2 illustrates via a numerical

example how the direct positive effect dominates at small η but the indirect negative

effect dominates at larger η.12

11The condition for this result to hold (26) is sufficient but not necessary, and in any case is a

rather weak restriction. Because k (n)1/ε−1 f (n)1/ε−1 < 1 but 1/ε ≥ 1 in case ε ≤ 1, the condition
is neither stronger nor weaker than (14) .
12This example assumes f (s) = 1 + sφ, φ = 0.6, ω = 0.1, δ = 0.98, α = 2.2, and ε = 0.8.
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Fig. 2. Personal vs Impersonal Learning Investments, ε < 1.

2.8 Long—run growth

Since both x and k (n) are increasing in η, the growth rate of output :

At+1
At

= 1 + k (n) x,

should only rise in tandem. How that additional growth is achieved, however, differs

between the two regimes of whether ε is below or above 1. In the first case, there

is greater agglomeration of production, and workers tend to spend more time on

personal and possibly less on impersonal learning. In the second case, the city could

shrink in size, whereby workers would raise impersonal at the expense of personal

learning investments.

2.9 Alternative assumptions on commuting

In closing, it would be instructive to examine how the analysis would be affected

under the more usual assumption in urban models that the inputs to commuting are
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supplied by the same agent who demands the commuting.

Consider first the most often adopted assumption that it costs an agent a certain

number of units of her own output to travel one unit distance. In this case, the

congestion cost of agglomeration would just stay constant over time. In a dynamic

urban model, where the returns to agglomeration grow at the rate of productivity

increase, the city would grow in size in parallel to the productivity growth. In this

environment, the analysis of how equilibrium city size behaves with respect to changes

in the technology of communications would be considerably more involved than the

same analysis in which equilibrium city size stays constant over time.

An apparently benign alternative is to assume that commuting cost is in terms of

time lost to production, in which case the congestion cost of agglomeration could well

grow with the returns to agglomeration. The problem with this assumption is that,

unless the monopoly developer assumption is literally true, and that the city planner,

as a landlord, can observe the productivity of each household—worker and commit to

take—it—or—leave—it offers, a symmetric equilibrium under which each worker’s human

capital grows at the same rate cannot be sustained. The arguments run like the

following: Suppose all but one worker have chosen to attain the same productivity

level, equal to say At+1, in the upcoming period. Assuming, without loss of generality,

that it takes 1 unit of time to commute 1 unit distance, the equilibrium rent function

in the period would be given by

ht+1 (d) = At+1 (bt+1 − d) . (27)

If the worker in question shall a attain a productivity level At+1 < At+1, it would

be optimal for her to reside just at the city’s border, paying zero rent and incurring

bt+1At+1 as the opportunity cost of commuting. If the worker instead chooses to

attain At+1 = At+1, she would be indifferent among any locations d ≤ bt+1 as she
pays the same location cost equal to bt+1At+1 anywhere in the city. For At+1 ≤
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At+1 then, the worker’s location cost is given by bt+1At+1. But should the worker

decide to attain some At+1 > At+1, with the rent function given by (27) , the worker

would find it optimal to reside just at d = 0, incurring a location cost equal to

bt+1At+1 < bt+1At+1. Thus, there would be a kink in the worker’s payoff function at

At+1 = At+1, giving rise to a discontinuity in the first order condition, from which

it follows that the worker’s optimal At+1 can never occur at At+1.13 A symmetric

equilibrium fails to exist as a result. Further, in the social optimum, workers locating

differently should indeed invest differently: The time that remains after commuting

for workers cannot be identical when they locate differently. Then the returns on

human capital investment would also differ among workers. While equilibrium and

optimum asymmetries are interesting in their own rights, they are beyond the scope of

this paper. And again the analysis of how equilibrium city size behaves with respect

to changes in communications technology would be considerably more involved in

such an environment.
13If the monopoly developer assumption is literally true, and that the developer can observe

each worker’s productivity in the housing market and commit to take—it—or—leave—it offers, it would

charge a worker whose productivity is equal to At+1 a rent of At+1 (bt+1 − d) for location d. The
worker’s location cost is then equal to At+1bt+1 at any levels of At+1. But such assumptions are

probably not plausible. True, an essential element in the publicly—supplied commuting setup I adopt

in this paper is that each worker’s productivity is observable to the transit authority in the labor

market. Otherwise, a worker’s wage rate in the urban transportation sector needs not be identical

to the worker’s productivity in the good sector. Still it seems much more agreeable to assume that

a worker’s productivity is observable in the labor market than to assume that it is observable in the

housing market.
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3. CROSS—SECTOR SPILLOVERS AND INDUSTRIAL DIVERSITY

3.1 Learning in a multi—sector economy

In this section, I extend the analysis to study how urban industrial diversity is

determined together with city size in a multi—sector economy. To begin, assume that

now the consumption good can be produced via a continuum of technology, indexed

by j ∈ [0, 1], where each technology is identified as a distinct sector. Each worker’s
human capital is assumed to be specific to one such technology only.

In this economy, each city may host one, two, or just any number of sectors. In

the absence of cross—sector spillovers though, in equilibrium, there would not be

multi—sector cities. Adding a sector to a city raises the city’s population and thereby

the congestion cost of agglomeration. With no benefits to counteract the increased

congestion cost, the city is unambiguously a less desirable place to learn and to

produce.14 In the presence of cross—sector spillovers in learning, however, whereby

a sector j worker may learn from workers in other sectors, in addition to learning

from her peers in the same sector, there could well be room for a multi—sector city

equilibrium.

Specifically, let kijt represent the sector j knowledge capital that city i workers can

access in human capital investment. It is simplest to consider a symmetric configu-

ration in which the productivity of learning investment in city i is given by a CES

aggregate of the sectoral and city specific knowledge capital stocks :

kit =
µZ 1

0
k

σ−1
σ

ijt dj
¶ σ

σ−1
, (28)

where σ > 0 is the elasticity of substitution between the knowledge capitals drawn

from any two sectors. In parallel with the setup in the last section, assume that

kijt =
µh
Aijtf (sijt)

i ε−1
ε +

h
Ajtη

i ε−1
ε

¶ ε
ε−1
, (29)

14See Duranton and Puga (2004) and Abdel-Rahman and Anas (2004) for more discussion.
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where Aijt and Ajt represent, respectively, the average human capital of sector j

workers in city i and the economywide average human capital of sector j workers,

and sijt the mass of sector j workers residing in city i. Then the city’s population is

nit =
Z 1

0
sijtdj.

Implicit in (28) and (29) is the same dichotomy between learning through im-

personal means of communications and through personal interactions. That is, if a

sector, say j, is not present in city i, the city’s workers may only learn from sector j

workers elsewhere in the economy through impersonal means of communications. On

the other hand, if there are sufficiently many sector j workers residing in city i, the

learning investment may also be facilitated by the physical interactions with these

workers.

In case Aijt = Ajt = At, and further if each sector present in the city is of the same

size, given by sijt = sit, (28) specializes to

kit = At

µ
nit
sit
k (sit)

σ−1
σ +

µ
1− nit

sit

¶
κ

σ−1
σ

¶ σ
σ−1 ≡ Atk (nit, sit) , (30)

where nit/sit ≤ 1 is the range of sectors the city hosts. The equation of motion in (2)
is henceforth replaced by

At+1 = At + kitxt. (31)

Previously, I assumed that the learning related agglomeration economies would

begin to take effect with the very first worker in the city; i.e., f 0 (n) > 0 for n ≥ 0.
It turns out that with the same assumption in the present environment, the city

developer would always find it optimal to include the full range of sectors in the

city under the respective CES assumptions on kijt and kit in (29) and (30) . Then

there would not be a non—trivial analysis of urban industrial diversity. The simplest

modeling strategy to get around the problem is to assume that f 0 (s) > 0 only for

s ≥ µ, for some threshold µ > 0, whereas f (s) remains equal to 1 for s < µ.
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One possible justification for this admittedly unusual assumption is that learning

from workers of a particular sector facilitated by personal contacts is probably not

possible unless there are sufficiently many of the sector’s workers present, for otherwise

the interactions could just be too infrequent to give rise to any meaningful learning

opportunities.15 ,16

3.2 Optimal time division

The specification of the learning technology in (30) and (31) can be derived as the

outcome of the worker’s optimal division of time among learning from workers in each

sector in the economy, in much the same way (2) and (10) fall out from the worker’s

optimal time division between the two kinds of learning investment in section 2.

Specifically, let xjt denote the time the worker spends on learning from sector j

workers. If the aggregate time investment is xt,Z 1

0
xjtdj = xt. (32)

Assume that in period t the worker’s human capital increases by an amount given by

∆it =
µZ 1

0
[kijtxjt]

ρ−1
ρ dj

¶ ρ
ρ−1
. (33)

Taking the learning environment as given, the worker chooses xjt, j ∈ [0, 1] , to

maximize (33) subject to (32) . If Aijt = Ajt = At, and sijt = sit for each sector

present in the city, the worker would find it optimal to set xjt = xSt for all j in which
15If for example learning takes place through pairwise meetings of workers, the matching of workers

could be subject to some kind of increasing returns.
16Alternatively, one may assume that a certain local public good is an essential input to production

in the city, and that the quantity required is increasing in the range of sectors present in the city.

Then the city developer may find it optimal not to include the full range of sectors in the city,

notwithstanding assuming f 0 (s) > 0 for s ≥ 0. Such an assumption is argubly less plausible than
assuming the kind of increasing returns explained above.
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sijt = sit > µ and xjt = xBt for all j in which sijt = 0, for some x
S
t and x

B
t . Then (33)

reads

∆it = At

Ã
nit
sit

h
k (sit) x

S
t

iρ−1
ρ +

µ
1− nit

sit

¶ h
κxBt

i ρ−1
ρ

! ρ
ρ−1
, (34)

while (32) becomes
nit
sit
xSt +

µ
1− nit

sit

¶
xBt = xt. (35)

Maximizing (34) with respect to xSt and x
B
t subject to (35) yields

xSt =
xtk (sit)

ρ−1

nit
sit
k (sit)

ρ−1 +
³
1− nit

sit

´
κρ−1

, (36)

xBt =
xtκ

ρ−1

nit
sit
k (sit)

ρ−1 +
³
1− nit

sit

´
κρ−1

. (37)

Then (30) and (31) fall out from substituting (36) and (37) into (34), where σ = 1
2−ρ .

3.3 Equilibrium sector size

The city developer’s maximization remains as given by (15) in section 2, except

that the developer in the multi—sector economy also faces the choice of the range

of sectors to be included in the city. Given nit, choosing the range of sectors to be

included in the city is equivalent to choosing the size of each sector in the city, of

which the first order condition reads

− σ

σ − 1
µ
k (s)

σ−1
σ − κ

σ−1
σ

¶
+ sk (s)1/ε−1/σ f (s)−1/ε f 0 (s) = 0, (38)

where I have, without loss of generality, dropped the city and the time subscripts.

Now (38) is simply the first order condition of maximizing k (s, n) with respect to s,

where the left side is indeed diminishing in s given (14) . Further, if

lim
s→∞ sk (s)

1/ε−1/σ f (s)−1/ε f 0 (s) = 0, (39)
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there exists a unique solution for s > µ to the equation.17

Given city size, as s increases, the city may only host fewer sectors. With the fallen

industrial diversity, the city’s workers may only be able to learn through impersonal

means from workers in sectors no longer present in the city. But as s increases,

there would also be increasing concentration of workers from the remaining sectors

in the city, allowing the city’s workers to learn from them with greater intensity

and effectiveness. In equilibrium, the marginal cost (the first term of (38)) and the

marginal returns (the second term) are equated, giving rise to (38) . The natural

question to follow up is how the cost and returns to increasing sector size may be

affected by an increase in η.

Proposition 4 In case ε < 1, s is increasing in η if and only if ε < σ. In case ε > 1,

s is increasing in η if and only if ε > σ.

It turns out that an increase in η would raise the returns, as well as the cost, to

increasing sector size if and only if ε < σ. In this event, if ε < 1 as well, the increase

in marginal returns would exceed the increase in marginal cost, yielding a larger s in

equilibrium. Conversely if ε > σ, and further if ε > 1, the decline in marginal returns

would not be as large as the decline in marginal cost to also result in a larger s.

3.4 Equilibrium city size

Where (38) is an equation in s only, equilibrium sector size is completely isomorphic

to city size. This special feature of the model helps simplify the analysis considerably
17With f (µ) = 1, k (µ) = κ. At s = µ then, the left side of (38) starts out equal to

µκ1/ε−1/σf 0 (µ) > 0, and if (39) holds, it ends up falling below 0 as s becomes large. Had we

continued to assume that f (0) = 1, so that k (0) = κ, the left side would start out equal to 0 at

s = 0 and becomes negative thereafter. In this case, k (n, s) is maximized at the corner of n/s = 1;

i.e., the city developer always finds it optimal to include the full range of sectors in the city.
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since in the determination of city size, sector size can be treated as given. Thus given

s, the city may have a population n ∈ [0, s]. As n increases from 0 to s, the range

of sectors included in the city increases from 0 to 1, while k (n, s) rises from κ to

k (s). The equilibrium condition for n, as in the analysis in section 2, can be derived

by combining the first order conditions of (15) with respect to nit and τ it and the

zero—profit condition for city formation :

xk (n, s)
1−σ
σ

σ

σ − 1
k (s)

σ−1
σ − κ

σ−1
σ

s
=

ωα

2 + α

nα/2−1

πα/2
. (40)

The left side of (40) , denoting the marginal returns to agglomeration, is decreasing

if and only if σ > 1 — an assumption that I should maintain for the following. The

appendix shows that

Lemma 3 (a) The marginal returns to agglomeration are increasing in η if ε < 1 <

σ. (b) The marginal returns would decline if ε > σ > 1.

Next, rewrite (40) as

xD (n, s) =
ωα

2 + α

nα/2−1

πα/2

k (n, s)
σ−1
σ sµ

k (s)
σ−1
σ − κ

σ−1
σ

¶ σ − 1
σ

, (41)

— a strictly increasing, and unbounded function of n that starts out equal to 0 at

n = 0, the counterpart of (19) for the single—sector economy.

Equation (22) that relates how the worker’s optimal x depends on n remains valid,

except that k is replaced by k :

xW (n, s) ≡ 1

1 + δ

"
δ − 1− δ

k (n, s)

#
, (42)

while the claims of lemma 2 continue to apply with some minor modification.

Lemma 4 xW (n) is strictly increasing, strictly concave if σ > 1/2, bounded by (23) ,

and positive over n ≥ 0 if (24) holds.
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The two functions (41) and (42) are the counterparts of (19) and (22), respectively,

for our previous analysis of the single-sector economy. In the present analysis, an

interior symmetric constant growth equilibrium can be defined as a n ∈ (0, s) that
solves xD (n, s) = xW (n, s), where s is the solution to (38) . Such an equilibrium

exists if xW (0, s) > xD (0, s) and xD (s, s) > xW (s, s) . The first condition can easily

be shown to hold given (24) . Whether the second condition holds depends on the

value of s at which xD and xW are evaluated. I should just proceed by assuming that

the condition holds rather than to dwell on the details, in which case :

Proposition 5 Given the existence of an interior equilibrium in the multi—sector

economy, the equilibrium is unique if (25) holds.

3.5 City size, urban industrial diversity, and improvements in communica-

tions technology

To begin analyzing how improvements in communications technology may affect

city and sector sizes and urban industrial diversity, it is useful first to establish that :

Proposition 6 An increase in the productivity of learning through impersonal means

of communications η raises equilibrium city size n if ε ≤ 1 < σ.

The claim of proposition 6 is almost identical to the claim of proposition 2(a).

The novelty in the extension to studying a multi—sector city equilibrium is that it

allows an analysis of how urban industrial diversity; i.e., the range of sectors hosted

in each city n/s, behaves with respect to changes in the learning environment. Table

1 summarizes the claims of propositions 4 and 6. Because the analysis is restricted

to where σ > 1, there are just three mutually exclusive possibilities to consider.
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Table 1 : Comparative steady state of η

sector size city size urban industrial diversity

∂s/∂η ∂n/∂η ∂ (n/s) /∂η

1. ε ≤ 1 + + ?

2a. 1 < σ < ε + ? ?

2b. 1 < ε < σ — ? ?

ε ≤ 1. When the two learning technologies are complements, as a result of the

increase in η, by propositions 4 and 6, respectively, the city and each of the sector it

hosts get larger at the same time. Then urban industrial diversity as measured by n/s

may increase or decline. Even though no firm analytical conclusions may be derived,

there is good reason to believe that n/s should change in the same general direction

as how n and s would change. If it pays to increase city size and the size of each

sector in the city because of the increase in the marginal returns to agglomeration,

it should pay to having more sectors located in the city too, for this serves the same

purpose of taking advantage of the increase in the marginal returns to agglomeration.

Figure 3 illustrates this tendency via a numerical example.18

1 < σ < ε. By proposition 4, if η increases, s increases too in equilibrium. Although

proposition 6 does not cover how n would be affected, lemma 4 does establish that

the marginal returns to agglomeration would fall in this case. In various numerical

experiments, I find that, not surprisingly, for sufficiently large η, following the decline

in the marginal returns to agglomeration, n must fall in equilibrium. Granted that

there is a larger s in the mean time, the ratio n/s declines as a result.
18This and the next example assume f (s) = 1 + (s− µ)φ , where φ = 0.6 and µ = 1. For this

example, α = 3.5, ε = 0.65, σ = 1.3, ω = 0.16, and δ = 0.98.
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Fig. 3. Urban industrial diversity; ε ≤ 1

Fig. 4. Urban industrial diversity; σ > ε > 1
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1 < ε < σ. By proposition 4, if η increases, there would be a smaller s in equilibrium.

But this case is not covered by either lemma 4 nor proposition 6. To check how the

marginal returns to agglomeration and indeed equilibrium city size would be affected

by an increase in η, I resort to a numerical example. Figure 4 illustrates one typical

instance of how n and n/s would be affected by the increase in η.19 Where the two

kinds of learning investment are substitutes, not surprisingly, these two variables are

found to follow similar downward trends.

Summing Up When city size and urban industrial diversity are jointly determined,

the two variables tend to move in the same direction with respect to advances in

communications technology. In case the two kinds of learning investment are comple-

ments, city size, sector size, and urban industrial diversity tend to increase together.

In case the two kinds of learning investment are substitutes, city size and urban

industrial diversity tend to fall together.

4. POLICY IMPLICATIONS

4.1 Industrial policy

In the multi—sector economy, implicit in the city developer’s maximization is also a

choice of a particular set of sectors to be included in the city. Which set is unimportant

under the symmetry assumption on the learning technology given in (28). Still, for

the city to offer its residents the planned learning environment, its population has to

be comprised of exactly s workers from each of the chosen sectors. On the contrary,

given symmetry, workers are indifferent among which cities to stay in equilibrium.

The problem that arises then is that an incentive compatible sorting mechanism to

coordinate workers to move to their rightful locations appears lacking.
19In this example, α = 2.2, ε = 1.2, σ = 1.4, ω = 0.1, and δ = 0.98.
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The city developer has every interest to maximize k (n, s) so as to be able to levy the

highest commuting charge and collect the maximum housing rent, while paying the

least subsidy. To this end, once a set of sectors is chosen, the developer could choose

to offer the subsidy only to workers belonging to the selected sectors. This helps

exclude workers not in those sectors from choosing to reside in the city. Besides, the

number of workers in each selected sector who would qualify for the subsidy should be

limited to just the planned sector size. In effect, the developer may control the precise

sectoral composition of the city through actively targeting subsidies to particular

workers. Such practices are widespread among city and regional governments in many

places in the world, and with cross—sector spillovers, they could serve an important

coordinating function.

4.2 The social optimum

How may equilibrium differ from social optimality? Consider the model in section 2

for simplicity.20 Granted that in equilibrium n maximizes per capita output net of the

resources used up in commuting, subject to attaining a certain level of productivity

growth, equilibrium city size should only coincide with socially optimum city size for

a given level of investment. This is a familiar result : In static models of an urban

system, a competitive market for cities would help deliver the first best allocation.21

But the competitive market for cities could not be relied upon to help induce efficient

investment on the part of workers in the presence of external effects.

First in the decentralized equilibrium, the worker takes as given the evolution of
20The statement of the planner’s problem and its solution can be found in an appendix available

for download in http://www.econ.hku.hk/~tsechung. The discussion to follow is equally applicable

to the model in section 3.
21Henderson (1974), Flatters, Henderson and Mieszkowski (1974), Hamilton (1975), Arnott and

Stigilitz (1979), and Henderson and Becker (2000), among others.
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kit in making investment decisions. In equilibrium, kit = Atk (nit). The planner

takes this relation into account. When workers fail to internalize the externality

that greater investment today helps contribute to raising the productivity of learning

investment for all in the periods to follow, they tend to underinvest. Because the

marginal returns to agglomeration are increasing in the level of investment, the city

tends to be underpopulated as a result.

A similar externality is at work in the model of Black and Henderson (1999), where a

worker’s productivity depends on the average productivity of workers in the same city.

But the sense in which the city in Black and Henderson is underpopulated is not quite

the same as the sense in which the city in the present model could be underpopulated.

In Black and Henderson, where the agglomeration economies are static production

economies, equilibrium city size does not depend on the level of investment but only

on the level of productivity. Thus given contemporaneous productivity, equilibrium

city size indeed coincides with socially optimum city size. The cities in their model

are underpopulated in the sense that the levels of productivity are suboptimal.

Unlike the model in Black and Henderson, where equilibrium investment is un-

ambiguously suboptimal, in the present model, equilibrium investment could be ex-

cessive, and cities could become overpopulated because of the presence of a second

externality. Recall that it costs the city developer ωAt units of output to supply

one unit of urban traveling. To recover the expenditure, the developer charges each

household a location cost of zitbαit while subsidizing each household for the amount τ it

in the zero—profit equilibrium. In making investment decisions, the worker takes as

given the evolutions of zit and τ it since to an individual household—worker, by how

much they grow is a function of economywide productivity increase. The planner

takes this relation into account. When workers fail to internalize the externality that

greater investment today helps contribute to costlier commuting for all in the periods

to follow, they tend to overinvest. Such externalities need not be peculiar to assuming
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a public urban transportation sector. In general, such a negative externality would

arise whenever labor is an essential input to the production of a local public good,

for which labor productivity is stagnant — the case of the Baumol’s disease.22

Could these investment externalities be internalized by the city developer via some

particular local tax/subsidy, and does the city developer has incentives to do just

that? Black and Henderson discuss in details two possibilities :

1. the city developer sets up a human capital requirement for entry into the city,

2. the city developer subsidizes the investment in human capital,

and conclude that in theory the answers are affirmative, but their implementations

are problematical, to say the least.23 They then argue it follows that the national

government has important roles to play to subsidize human capital investment. In

the present model, such a policy recommendation is not quite warranted before we

are able to resolve whether equilibrium investment is indeed suboptimal or excessive.

Now suppose we are able to answer in certain that investment is suboptimal, per-

haps from the quantitative analysis of the model under a set of plausible parameters.

The first best intervention is of course for the national government to directly subsi-

dize investment. Alternatively, the national government may choose to subsidize the

provision of urban transportation in particular and in the supply of local public good

in general. This would not only help move equilibrium city size, but also equilibrium
22Baumol (1967).
23The problem with the first option is that it is not clear how an entry requirement in human

capital can be enforced in a free society. Besides, they point out that an individual developer has

incentives to cheat to let in (or in the present model, to deny entry in case equilibrium investment

turns out to be excessive) a marginal household who has not met the entry requirement. The

problem with the second option is that with free mobility across cities, developers have incentives

to “steal” households away from cities that have subsidied their human capital investment. In the

present model and in case equilibrium investment is exessive, developers have incentives to provide

tax asylums to households who are discouraged to invest in other locales.
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investment, closer to optimum, given that in the decentralized equilibrium, workers

would choose to invest a greater amount in the larger city. True such policy inter-

ventions could not be relied upon to attain the first best optimum : Even if each city

is of the optimum size, the investment externalities remain. They could nevertheless

help move equilibrium investment closer to optimum investment.

5. CONCLUDING REMARKS

In academia, we tend to believe that face—to—face and impersonal communications

should always be complements. The better we read up on the relevant literature,

the more fruitful the discussions with colleagues would become.24 The finding by

Kolko (2000) that internet domains tend to be disproportionately located in large

cities perhaps could also be taken to imply that personal contacts and impersonal

communications are complements.

The degree of complementarity between the two kinds of communications needs not

be given and remains at the same level over time though. For example, one way in

which the two kinds of communications could be complements is that often we learn

from others about where information on a particular subject can be found. Such

personal contacts could become increasingly valuable for two reasons :

1. As the stock of knowledge grows over time and becomes increasingly specialized,

we depend increasingly on others as sources of references.

2. When it becomes easier to access publicly available information because of

improvements in communications technology, a certain personal contact could lead

to uncovering a much greater amount of information in the aftermath.

With the advent of internet search engines and related technologies, such com-

plementaries could weaken, however, when technologies gradually come to replace

people as sources of references. An investigation into the microeconomic underpin-
24I owe this observation to an editor of the journal.
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nings of how the interaction between the two kinds of learning investment determines

the degree of substitutability between them could advance our understanding of this

important and interesting question.
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APPENDIX

Proof of proposition 1

To establish uniqueness, combine (16) and (22) :

³
δ − (1− δ) k (n)−1

´
k (n)1/ε−1 f (n)−1/ε f 0 (n)− α (1 + δ)ω

(2 + α) πα/2
nα/2−1 = 0, (43)

to obtain an equation in n only. Equilibrium is unique if this equation has at most

one solution. Differentiating,

D = k (n)1/ε−1 f (n)−1/εΦ+
(2− α) (1 + δ)αω

2 (2 + α) πα/2
nα/2−2, (44)

where

Φ ≡
³
δ − (1− δ) k (n)−1

´Ãµ1
ε
− 1

¶
k (n)1/ε−1 f (n)−1/ε f 0 (n)2 − 1

ε

f 0 (n)2

f (n)
+ f 00 (n)

!
+(1− δ) k (n)1/ε−2 f (n)−1/ε f 0 (n)2 .

The last term of (44) is negative if α > 2; then it suffices to show that Φ is likewise

negative. Now if (25) holds, since k (n) ≥ κ,

δ >
2

k (n) + 2
,

from which it follows that

δ − (1− δ) k (n)−1 > (1− δ) k (n)−1 . (45)

Then

Φ <
³
δ − (1− δ) k (n)−1

´ "1
ε
k (n)1/ε−1 f (n)−1/ε f 0 (n)2 − 1

ε

f 0 (n)2

f (n)
+ f 00 (n)

#
< 0,

where the second inequality is by (14) .
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Proof of proposition 2

To establish (a), totally differentiate (43) to obtain

dn

dη
=
k (n)2/ε−2 f (n)−1/ε η−1/εf 0 (n)

−D
µ
[1− δ] k (n)−1 +

³
δ − [1− δ] k (n)−1

´µ1
ε
− 1

¶¶
.

(46)

First D < 0 if (25) holds, while the bracketed term is guaranteed to be positive if

ε < 1. To establish (b), by (22) ,

dx

dη
=
1− δ

1 + δ
k (n)−2

dk (n)

dη
, (47)

while

dk (n)

dη
=

∂k (n)

∂η
+

∂k (n)

∂n

∂n

∂η

=
k (n)1/ε

η1/ε

Ã
1 + η1/εf (n)−1/ε f 0 (n)

∂n

∂η

!

=
k (n)1/ε

η1/ε

1− (1− δ) k (n)−1 +
³
δ − [1− δ] k (n)−1

´ ³
1
ε
− 1

´
f (n)2/ε f 0 (n)−2 k (n)2−2/εD

 , (48)
where the last equality is by (46). Since D < 0, the sign of dk/dη is the same as the

sign of

Ψ = (1− δ) k (n)−1 +
³
δ − [1− δ] k (n)−1

´µ1
ε
− 1

¶
− f (n)2/ε f 0 (n)−2 k (n)2−2/εD

=
(α− 2) (1 + δ)αω

2 (2 + α) πα/2
nα/2−2

f (n)2/ε

f 0 (n)2
k (n)2−2/ε −

³
δ − [1− δ] k (n)−1

´
×µ

k (n)1−1/ε f (n)1/ε f 0 (n)2 f 00 (n)− 1
ε
k (n)1−1/ε f (n)1/ε−1

¶
.

The last bracketed term is negative by (14) and thus Ψ > 0.

Proof of proposition 3

By (11) , (7) , and that Ait = At,

dxP

dη
= f (n)1−1/ε k (n)1/ε−1

Ã
dx

dη
+ x

µ
1

ε
− 1

¶
×
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"
k (n)1/ε−1 η−1/ε +

³
k (n)1/ε−1 f (n)−1/ε − f (n)−1

´
f 0 (n)

dn

dη

#!

=

Ã
f 0 (n)2

f (n)
− f 00 (n) + α− 2

2
n−1

!
f (n)1−1/ε

f 0 (n) k (n)
x
dn

dη
,

where the second inequality is by (46) , (47), and (16). In case ε ≤ 1, dn/dη > 0.

Then dxP/dη is guaranteed to be positive if (26) holds. Suppose ε > 1 and further

suppose dn/dη < 0. Then dxP/dη is guaranteed to be negative if the terms inside the

bracket sum to a positive expression, which follows from (14) . Next by (8) , (11) , and

that Ait = At,

dxI

dη
= η1−1/εk (n)1/ε−1

Ã
dx

dη
+ x

µ
1

ε
− 1

¶"
k (n)1/ε−1 f (n)−1/ε f 0 (n)

dn

dη
− η−1

#!

=
−Dη

³
dn
dη

´2
+ (1− δ) k (n)2/ε−3 η1−2/ε

1 + δ
+ xk (n)1/ε−1 η−1/ε

µ
1− 1

ε

¶
,

where the second equality is once again by (47) and (46) . Then dxI/dη is guaranteed

to be positive if ε ≥ 1.

Proof of proposition 4

Totally differentiating (38) yields

∂s

∂η
=

f (s)1/ε
µ
1−

³
κ
k(s)

´1/ε−1/σ − sf (s)−1/ε f 0 (s) ³1
ε
− 1

σ

´
k (s)1/ε−1

¶
sη1/ε

³³
1
ε
− 1

σ

´
k (s)1/ε−1 f (s)−1/ε f 0 (s)2 − 1

ε
f (s)−1 f 0 (s)2 + f 00 (s)

´ . (49)

The denominator is negative by (14). Multiply the numerator by f (s)−1/ε k (s)1−1/σ.

The sign of ∂s/∂η is thus the same as the sign of

Ω ≡ −k (s)σ−1σ + κ
σ−1
σ

Ã
k (s)

κ

! ε−1
ε

+ sf (s)−1/ε f 0 (s)
µ
1

ε
− 1

σ

¶
k (s)1/ε−1/σ

= −k (s)σ−1σ + κ
σ−1
σ

Ã
k (s)

κ

! ε−1
ε

+
σ − ε

ε (σ − 1)
µ
k (s)

σ−1
σ − κ

σ−1
σ

¶
(by (38))

= κ1/ε−1/σ
µ
k (s)

ε−1
ε − κ

ε−1
ε

¶
− σ

σ − 1
ε− 1
ε

µ
k (s)

σ−1
σ − κ

σ−1
σ

¶
= κ1/ε−1/σ

µ
f (s)

ε−1
ε − 1

¶
− σ

σ − 1
ε− 1
ε

µ
k (s)

σ−1
σ − κ

σ−1
σ

¶
(by (12) and (13)),
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which vanishes at s = µ since f (µ) = 1 and k (µ) = κ. Differentiating with respect

to s,
∂Ω

∂s
=

ε− 1
ε
f (s)−1/ε f 0 (s)

³
κ1/ε−1/σ − k (s)1/ε−1/σ

´
.

Since κ < k (s) for s > µ, if ε > 1, ∂Ω/∂s > 0 iff ε > σ. Conversely, if ε < 1,

∂Ω/∂s > 0 iff ε < σ.

Proof of lemma 3

First substitute (38) into (40) :

xk (n, s)
1−σ
σ k (s)1/ε−1/σ f (s)−1/ε f 0 (s) =

2ω

2 + α

α

2

nα/2−1

πα/2
. (50)

Totally differentiating the left—side with respect to η, while recognizing ∂k/∂s = 0

holds at where s satisfies (38) , and then multiplying through by

x−1k (n, s)1−1/σ k (s)1/σ−1/ε f (s)1/ε

yields

Θ ≡ 1− σ

σ
k (n, s)

1−σ
σ f 0 (s)

µ
n

s
k (s)1/ε−1/σ η−1/ε +

µ
1− n

s

¶
κ1/ε−1/ση−1/ε

¶
+µ

1

ε
− 1

σ

¶
k (s)

1−ε
ε η−1/ε +

∂s

∂η

½µ
1

ε
− 1

σ

¶
k (s)

1−ε
ε f (s)−1/ε f 0 (s)2

−1
ε
f (s)−1 f 0 (s)2 + f 00 (s)

¾
, (51)

where ∂s/∂η is given by (49) . To proceed, substitute (30) and (49) into (51) ,

Θ =

Ã
f (s)

η

!1/ε
s−1

1− " κ

k (s)

#1−1/σ×
1− [κ/k (s)]1/ε−1/σ
1− [κ/k (s)]1−1/σ −

n
s
k (s)

σ−1
σ +

³
1− n

s

´
κ

σ−1
σ [k (s) /κ]

ε−1
ε

n
s
k (s)

σ−1
σ +

³
1− n

s

´
κ

σ−1
σ

 .
The above is negative if ε > σ > 1. This proves (b). If ε < 1 < σ,

Θ >

Ã
f (s)

η

!1/ε
s−1

" κ

k (s)

#1−1/σ
−
"

κ

k (s)

#1/ε−1/σ > 0.
This proves (a).
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APPENDIX NOT TO BE CONSIDERED FOR PUBLICATION

The social optimum

In the social optimum, given A0, the planner maximizes the utility of the represen-

tative household :

U =
∞X
t=0

δt ln ct,

subject to

ct = At (1− xt)− 2ωAt
2 + α

n
α/2
t

πα/2
, (52)

At+1 = At +Atk (nt)xt. (53)

by choosing (xt, nt). The value function of maximizing U reads

U (At) = max
At+1,nt

ln
At

Ã
1− At+1 − At

Atk (nt)

!
− 2ωAt
2 + α

n
α/2
t

πα/2

+ δU (At+1)

 . (54)

The first order conditions are

−
1− xt − 2ωAt

2 + α

n
α/2
t

πα/2

−1 1

Atk (nt)
+ δU 0 (At+1) = 0, (55)

xtk (nt)
1/ε−1 f (nt)

−1/ε f 0 (nt)− 2ω

2 + α

α

2

n
α/2−1
t

πα/2
= 0. (56)

Differentiating (54) with respect to At yields

U 0 (At) =
1

At

1 + "
1− xt − 2ω

2 + α

nα/2

πα/2

#−1 Ã
xt +

1

k (nt)

! .
and substitute the result into (55) yields

−
1− xt − 2ωAt

2 + α

n
α/2
t

πα/2

−1 + δ
k (nt)

1 + k (nt) xt

1 +
1− xt+1 − 2ω

2 + α

n
α/2
t+1

πα/2

−1×
Ã
xt+1 +

1

k (nt+1)

!!
= 0, (57)
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The optimum solution is a (xt, nt) pair that satisfies (56) and (57). Because the state

variable At does not appear in either equation, the system (56) and (57) is solved by

a time—stationary pair (x, n). In this case, (57) simplifies to

x∗ (nt) = δ

1− 2ω

2 + α

n
α/2
t

πα/2

+ (1− δ) k (nt)
−1 . (58)

The first optimality condition (56) is identical to the equilibrium condition (16) .

Thus given xt, equilibrium city size coincides with socially optimum city size. But

optimum investment x∗ (n) differs from equilibrium investment xW (n), given by (22)

in two important respects.

1. In the free market equilibrium, the worker takes as given the evolution of kit in

making investment decisions. In the symmetric constant growth equilibrium,

kit = Atk (nit). The planner takes this relation into account. It can be shown

that if (2) in the worker’s maximization is replaced by (53), in equilibrium,

xD (n) = δ + (1− δ) k (n)−1 ,

would obtain in place of (22). That is, workers tend to underinvest when they

fail to internalize the externality that greater investment today helps contribute

to raising the productivity of learning investment for all in the periods to follow.

2. It costs the city developer ωAt units of output to supply one unit of urban

traveling. To recover the expenditure, the developer charges each household a

location cost of zitbαit while subsidizing each household for the amount τ it in the

zero—profit equilibrium. In making investment decisions, the worker takes as

given the evolutions of zit and τ it since to an individual household—worker, by

how much they grow is a function of economywide productivity increase. The

planner takes this relation into account. It can be shown that if −zitbαit + τ it in
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(3) is replaced by −2ωAt
2+α

n
α/2
it

πα/2
via the zero—profit condition for city formation, in

equilibrium,

xD (n) =
δ
³
1− 2ω

2+α
nα/2

πα/2

´
+ (1− δ) k (n)−1

1 + δ

would obtain in place of (22) . That is, workers tend to overinvest when they

fail to internalize the externality that greater investment today helps contribute

to costlier commuting for all in the periods to follow.

Derivation of (4)

By (2), (3) reads

Vit (At) = max
At+1

½
At

µ
1− At+1 − At

kit

¶
− zitbαt + τ it + βVit+1 (At+1)

¾
.

Taking first order condition :

−At
kit
+ βV 0it+1 (At+1) = 0. (59)

Differentiate Vit (At) with respect to At :

V 0it (At) = 1−
At+1 − At

kit
+
At
kit
,

and substitute the result into (59) yields (4) .

Derivation of (16)

The Lagrangian of (15) reads

L = max
{nit,zit,τ it,λ}


µ
zit − 2ωAt

2 + α

¶
n
1+α/2
it

πα/2
− nitτ it + λ

³ eVit (At)− Vt (At)´
 . (60)

Taking first order conditions with respect to τ it and nit,

−nit + λ = 0, (61)
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µ
zit − 2ωAt

2 + α

¶
2 + α

2

n
α/2
it

πα/2
− τ it + λ

At+1 −At
k (nit)

2

∂k (nit)

∂nit
− zitα

2

n
α/2−1
it

πα/2

 = 0. (62)

The zero profit condition isµ
zit − 2ωAt

2 + α

¶
n
1+α/2
it

πα/2
− nitτ it = 0⇒ τ it =

µ
zit − 2ωAt

2 + α

¶
n
α/2
it

πα/2
. (63)

Combining (61)− (63) , while evaluating
∂k (nit)

∂nit
= k (nit)

1/ε f (nit)
−1/ε f 0 (nit) , (64)

using (10) yields (16) . Finally the first order condition of (60) with respect to zit :

n
1+α/2
it

πα/2
+ λ

µ
nit
π

¶α/2

= 0

is satisfied at any zit with λ given by (61) . In this case, given nit, τ it and zit jointly

satisfy (63) .

Proof of lemma 1

Differentiating the left—side of (16) with respect to η yields

x
1− ε

ε
k (n)2/ε−2 η−1/εf (n)−1/ε f 0 (n) >

<
0 iff ε<

>
1.

Proof of lemma 2

Differentiate (22) with respect to n:

∂xW (n)

∂n
=
1− δ

1 + δ
k (n)1/ε−2 f (n)−1/ε f 0 (n) > 0. (65)

Further differentiating with respect to n yields a negative expression by (14) . Thus,

(22) is a strictly increasing and strictly concave function of n. Differentiating the left

side of (22) with respect to η yields

∂xW (n)

∂η
=
1− δ

1 + δ
k (n)1/ε−2 η−1/ε > 0.

48



Derivations of (38) and (40)

The Lagrangian for the profit maximization remains given by (60), except that kit is

replaced by kit. In this case, maximizing (60) with respect to sit is simply maximizing

k (nit, sit) with respect to sit. Evaluating the partial derivatives using (30) yields (38) .

As in the derivation of (16) , (40) is obtained by combining the first order conditions

of (60) with respect to nit and τ it and the zero-profit condition (63) , except that

∂k (nit) /∂nit in (62) is replaced by ∂k (nit, sit) /∂nit.

Proof of lemma 4

Differentiate (42) with respect to n :

∂xW

∂n
=
1− δ

1 + δ
k (n, s)1/σ−2

σ

σ − 1
k (s)

σ−1
σ − κ

σ−1
σ

s

Differentiate further :

∂2xW

∂n2
=
1− δ

1 + δ

µ
1

σ
− 2

¶
k (n, s)2/σ−3

 σ

σ − 1
k (s)

σ−1
σ − κ

σ−1
σ

s

2 < 0,
where σ > 1/2.

Proof of proposition 5

Substitute (42) into (40) to obtain an equation in n only :

δ − (1− δ) k (n, s)−1

1 + δ
k (n, s)

1−σ
σ

σ

σ − 1
k (s)

σ−1
σ − κ

σ−1
σ

s
=

2ω

2 + α

α

2

nα/2−1

πα/2
. (66)

Since the right side is increasing in n, the equation has at most one solution if the

left side is decreasing in n. If (25) holds, the condition follows, as can be established

by straightforward differentiation.
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Proof of proposition 6

Given ε ≤ 1 < σ, by lemma 3, the term

k (n, s)
1−σ
σ

σ

σ − 1
k (s)

σ−1
σ − κ

σ−1
σ

s

in (66) , denoting the marginal returns to agglomeration normalized by x, is increasing

in η. Further,

xW (n, s) =
δ − (1− δ) k (n, s)−1

1 + δ

in (66) is likewise increasing in η since by lemma 4 ∂k/∂n > 0, and then ∂k/∂s = 0

at where s satisfies (38) . Granted that the whole of the left side of (66) is decreasing

in n, the proposition follows.

50


