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The Implied Volatility Smirk

Abstract

This paper provides an industry standard on how to quantify the shape of the implied

volatility smirk in the equity index options market. Our local expansion method uses a

second-order polynomial to describe the implied volatility – moneyness function and relates

the coefficients of the polynomial to the properties of the implied risk-neutral distribution

of the equity index return. We present a formal, two-way representation of the link between

the level, slope and curvature of the implied volatility smirk and the risk-neutral standard

deviation, skewness and excess kurtosis. We then propose a new semi-analytical method

to calibrate option-pricing models based on the quantified implied volatility smirk, and

investigate the applicability of two option-pricing models.
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1 Introduction

The implied volatility of an option is defined as the volatility that equates the Black-Scholes

(1973) formula to the market price of the option. It is another way to quote the option

price. The implied volatility on a particular day, as a two-dimensional function of the strike

price and time to maturity, is regarded as the implied volatility surface. Rubinstein (1985)

documented the phenomenon of the implied volatility smile before 1987, i.e., the implied

volatility of US equity index options, as a function of the strike price for a certain maturity,

followed the pattern of a symmetric and smiling curve. Since the market crash in 1987, the

implied volatility as a function of the strike price has been skewed towards the left, see,

e.g., the empirical evidence of Rubinstein (1994), Aı̈t-Sahalia and Lo (1998), and Foresi

and Wu (2005). This phenomenon has been called the implied volatility smirk.2

Market smirks are usually managed by using the local volatility model of Derman and

Kani (1994), Dupire (1994) and Rubinstein (1994) in the financial industry. Ncube (1996)

fits the implied volatility surface of FTSE 100 index options with parameter models. Du-

mas, Fleming and Whaley (1998) examines the predictive and hedging performance of

option-pricing models under deterministic (local) volatility by using S&P 500 options from

June 1988 through December 1993. They find it is no better than an ad hoc procedure

that merely smooths the implied volatility across strike prices and times to maturity. Ski-

adopoulos, Hodges and Clewlow (1999) analyzes the dynamics of the implied volatility smile

of S&P 500 futures options by applying principal components analysis. Peña, Rubio and

Serna (1999) studies the determinants of the implied volatility function, such as transaction

costs, time to expiration, market uncertainty and relative market momentum. They use the

Spanish IBEX-35 index options from January 1994 to April 1996. Hagan et al. (2002) finds

that the dynamics of the market smile (or smirk) predicted by the local volatility model is

opposite of the observed market behavior. They propose a stochastic volatility constant-

2Both terms, implied volatility smirk and skew are used in the finance literature and the financial
industry with slightly different meaning. A smirk can be regarded as the superposition of a skew and a
smile.
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elasticity-of-variance (CEV) model3 for the forward price and price European options by

using singular perturbation method. Cont and da Fonseca (2002) studies the evolution

of entire implied volatility surface. Dennis and Mayhew (2002) empirically studies the

cross-sectional behavior of the implied volatility smirk, in particular the relation between

the risk-neutral skewness implied by individual stock options and the beta of the stock.

Jiang et al. (2003) recovers the implied local volatility numerically in an optimal control

framework. Bollen and Whaley (2004) studies the source of the implied volatility smirk,

in particular the effect of net buying pressure. Foresi and Wu (2005) documented the phe-

nomenon of the implied volatility smirk for the major equity indices in twelve countries.

Brenner, Ou and Zhang (2006) proposes using derivatives on the at-the-money-forward

straddle to trade and hedge volatility risk.

The implied volatility surface has all the information of market option prices. It reflects

the risk-neutral distribution of underlying asset returns over different horizons. Under-

standing and making good use of it are very important. These are the subjects of this

paper. Our target is to develop a simple and intuitive way to quantify the shape of the

implied volatility smirk and an easy-to-use method to calibrate option-pricing models.

Since most of the traded options are near the money, we will look closely at the implied

volatility smirk in the neighborhood of the strike at the money4. We define the moneyness

to be the logarithm of the strike price over the implied forward price, normalized by the

standard deviation of the return on maturity. We use a second-order polynomial function

to describe the implied volatility – moneyness curve, and we relate the level, the slope, and

the curvature coefficients to the properties of the implied risk-neutral distribution of the

asset return. The main contribution of this paper lies in a formal, two-way representation

of the link between the level, slope and curvature of the implied volatility smirk and the

risk-neutral standard deviation, skewness and excess kurtosis.

We document the term structure and dynamics of the level, slope and curvature of

3The model is known as the SABR model, which stands for stochastic alpha beta rho (Hagan et al.
2002).

4In this paper, at the money is defined as the point that the strike price, K, is equal to the implied
forward price, F0.
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the implied volatility smirk of the S&P 500 index options market. On a randomly-picked

date, November 4, 2003, the term structure of the level, i.e., the at-the-money implied

volatility (ATMV), of November S&P 500 index options was upward sloping. The value of

the implied volatility ranged from 14% for two-week short-term options to 18% for long-

term options with an observable horizon of two years. The term structure of the slope is

almost flat especially for long-term options. The value of the slope is about −0.17, very

stable for options with maturities ranging from two months to two years. The negative

value of the slope implies the negative skewness of the risk-neutral distribution of S&P 500

index returns. The implied volatility smirk does not flatten out as the maturity increases to

almost two years. This pattern has been documented and explained with a Finite Moment

Log Stable (FMLS) process by Carr and Wu (2003). The term structure of the curvature

oscillates between 0 and 0.04. We also observe that the term structure of the ATMV does

not change much on a daily basis. It has a more regular pattern than the slope and the

curvature. This indicates that investors have a better understanding about the ATMV

than about the slope and the curvature. Our empirical results also show that the time

series of the level, slope and curvature of the implied volatility smirk for options with a

fixed maturity date is quite stationary.

We then use the term structure information to calibrate two option-pricing models:

the Constant Elasticity Variance model and the Finite Moment Log-Stable process. The

calibration exercise shows that the CEV model is not able to produce enough slope over

a short term because of its nature of pure diffusion. As a pure jump process, the FMLS

process is able to match the slope of the short-term market data.

The paper is organized as follows. In Section 2, we define a few concepts and present our

theoretical results. We describe the data and document the empirical evidence of the S&P

500 index options in Section 3. In Section 4, we propose a new semi-analytical method

to calibrate option-pricing models based on the quantified implied volatility smirk, and

investigate the applicability of two option-pricing models. Finally, we conclude the paper

in Section 5.

4



2 Quantify Implied Volatility Smirk

Most of the existing research on the implied volatility smirk is qualitative in nature, partially

because we lack appropriate quantities of data to describe the implied volatility – strike

price curve. For the convenience of quantifying an implied volatility smirk, we need to

define a few concepts: implied forward price, moneyness, the implied volatility level, slope

and curvature.

2.1 Definitions

The implied forward price, F0, is determined based on the put-call parity from option prices

with a certain maturity and a certain at-the-money strike. The at-the-money strike is the

strike price at which the difference between the call and put prices is the smallest. With

this implied forward price, one may verify with market data whether the put-call parity

holds for options at other strikes.

The moneyness, ξ, is defined as the logarithm of the strike price, K, over the implied

forward price, F0, normalized by the standard deviation of the return on maturity, i.e.,

ξ ≡ ln(K/F0)

σ̄
√

τ
, (1)

where σ̄ denotes a measure of the average volatility of the underlying asset price. As

pointed out by Carr and Wu (2003), the use of the constant σ̄ in the denominator of (1) is

an industry convention designed to allow comparisons across stocks. It also allows a simple

interpretation of this moneyness measure as roughly the number of standard deviations

that the log strike is away from the log forward price in the Black-Scholes model.

The implied volatility, IV , is computed by equating the Black-Scholes formula to the

market price of an option. As documented by Foresi and Wu (2005), the implied volatility

as a function of strike/moneyness for a certain maturity, is a negatively skewed curve for

most of the index options. This phenomenon is often called the implied volatility smirk in

the financial industry.

At a fixed maturity, we propose to use a second-order polynomial to describe the implied
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volatility – moneyness function, i.e.,

IV (ξ) = γ0(1 + γ1ξ + γ2ξ
2), (2)

where the first parameter, γ0, referred to as the level of the implied volatility smirk, is

an estimate of the at-the-money implied volatility (ATMV), with at-the-money defined as

ξ = 0, i.e., K = F0. The other two parameters, γ1 and γ2, are the slope and curvature of

the implied volatility smirk.

2.2 Theory

With the implied volatility function specified in a parametric form (2), we are able to

recover the risk-neutral probability analytically.

Proposition 1. The cumulative risk-neutral probability density function with a quadratic

implied volatility is

F (S, T ; F0, 0) = N(−d) + n(d)
γ0

σ̄

[
γ1 + 2γ2

ln(S/F0)

σ̄
√

τ

]
, τ = T, (3)

where S is the underlying stock price at maturity T , N(·) is a cumulative standard normal

distribution function, given by

N(x) =

∫ x

−∞
n(y)dy, n(y) =

1√
2π

e−y2/2, (4)

and

d = − ln(S/F0) + 1
2
V 2τ

V
√

τ
, V = γ0

[
1 + γ1

ln(S/F0)

σ̄
√

τ
+ γ2

(
ln(S/F0)

σ̄
√

τ

)2
]

.

The recovered risk-neutral probability density function is

f(S, T ; F0, 0) =
1

S

n(d)

V
√

τ

[
1 + d

γ0

σ̄

(
γ1 + 2γ2

ln(S/F0)

σ̄
√

τ

)]
×

[
1 +

(
d + V

√
τ
) γ0

σ̄

(
γ1 + 2γ2

ln(S/F0)

σ̄
√

τ

)]
+

n(d)

S

2γ0

σ̄2
√

τ
γ2. (5)

Proof. See Appendix A.
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Remark 1. Shimko (1993) proposes fitting a smooth curve to an implied volatility function

and recovers the risk-neutral density by using Breeden and Litzenberger (1978) formula.

Rubinstein (1994), and Jackwerth and Rubinstein (1996) use a numerical optimization

technique to recover the risk-neutral density. Aı̈t-Sahalia and Lo (1998) constructs a non-

parametric estimation for the risk-neutral density and derives its asymptotic sampling

theory. We fit the implied volatility function by a quadratic function and present an ex-

plicit and intuitive formula for the risk-neutral density. The goodness-to-fit will be verified

empirically with the S&P 500 index options in the next section.

The proposition relates the coefficients in the implied volatility function to the risk-

neutral probability. If both the slope and the curvature vanish, the risk-neutral probability

is reduced to a classical Black-Scholes lognormal distribution. The impact of the slope and

curvature on the risk-neutral distribution, described analytically by the two formulas (3,

5), is depicted in Figure 1. The figure is for a sample of the level, slope and curvature

obtained in the next section by fitting the market data on November 4, 2003. One may

observe that the negative slope in the implied volatility makes the probability density skewed

to the left. The positive curvature in the implied volatility makes the probability density

leptokurtic, that is, it has a higher peak and two heavier tails than those of the lognormal

distribution.

With some analysis, we may further obtain the relation between the implied volatility

level, slope and curvature and the risk-neutral standard deviation, skewness and excess

kurtosis.

Proposition 2. The level, slope and curvature of the implied volatility smirk, (γ0, γ1,

γ2), and the risk-neutral standard deviation, skewness and excess kurtosis, (σ, λ1, λ2) are

approximately related by following equations

1− 2N(d) ≈ [N(d1)−N(d2)]

[
1 +

λ1

3!
(σ
√

τ)3 +
λ2

4!
(σ
√

τ)4

]
+

(
λ1

3!
A +

λ2

4!
B

)
σ
√

τ ,
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N(−d) + n(d)
γ0

σ̄
γ1 ≈ N(−d2)−

[
λ1

3!
(d2

2 − 1)− λ2

4!
(d3

2 − 3d2)

]
n(d2), (6)

1

γ0

√
τ

(
1− d2 γ2

0

σ̄2
γ2

1 +
2γ2

0

σ̄2
γ2

)
n(d) ≈ 1

σ
√

τ

[
1− λ1

3!
(d3

2 − 3d2) +
λ2

4!
(d4

2 − 6d2
2 + 3)

]
n(d2),

where

d = −1

2
γ0

√
τ , d2 = −1

2
σ
√

τ +
µ
√

τ

σ
, d1 = d2 + σ

√
τ ,

µ = −1

τ
ln

[
1 +

λ1

3!
(σ
√

τ)3 +
λ2

4!
(σ
√

τ)4

]
,

A = −n′(−d2) + σ
√

τ n(−d2) + σ2τN(d2) = −(d2 − σ
√

τ)n(d2) + σ2τN(d2),

B = n′′(−d2)− σ
√

τ n′(−d2) + σ2τ n(−d2) + (σ
√

τ)3N(d2)

= −(1− d2
2 + σ

√
τ d2 − σ2τ) n(d2) + (σ

√
τ)3N(d2).

The result is obtained asymptotically by matching two option-pricing formulas at-the-money,

and their first- and second-order sensitivities with respect to the strike at-the-money. The

two option-pricing formulas are obtained with two different approaches: the Black-Scholes

formula with a known implied volatility function, and risk-neutral valuation formula with

moment expansion method.

Proof. See Appendix B.

The left-hand side of formula (6) depends only on the implied volatility level, slope and

curvature, while the right-hand side depends only on the risk-neutral standard deviation,

skewness and excess kurtosis. Given one set of the two sets of parameters, we may solve

the three equations for the other set.

When deriving the relation, we price options by using two different approaches. One

is the Black-Scholes formula with a known implied volatility function; the other one is

the risk-neutral valuation formula that uses the Edgeworth expansion of the probability

density with known skewness and excess kurtosis. The three relations in Proposition 2

are derived under the three matching conditions that two option-pricing formulas give the

same values for the at-the-money option, the first- and the second-order sensitivities of the

option price with respect to the strike price. The three financially meaningful matching
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conditions essentially reflect the industry practice.

In practice, for example, in the over-the-counter currency options market, quotes are

in terms of the at-the-money implied volatility, the risk reversal and the butterfly spread.

The risk reversal is a portfolio of two options: to long a call with a price, c, and to short a

put with a price, p, both out-of-the-money. Its value at-the-money, i.e., K = F0, is given

by

c(F0 + ∆K)− p(F0 −∆K) = c(F0 + ∆K)− c(F0 −∆K) + ∆Ke−rT

= 2∆K
∂c

∂K

∣∣∣∣
K=F0

+ ∆Ke−rT + O[(∆K)2]

= 2∆Ke−rT

[
F (S, T ; F0, 0)|S=F0 −

1

2

]
+ O[(∆K)2],

where ∆K denotes a small change in the strike price and the put-call parity is used in the

first equality. The notation, O[(∆K)2] represents the terms that are of the order of (∆K)2.

The risk reversal is used to trade the first-order sensitivity of the option price with respect

to the strike price, or the cumulative risk-neutral probability at-the-money shifted by 1/2.

The butterfly spread is a portfolio of three options: to long two calls, one in-the-money

and one out-of-the-money, and to short two at-the-money calls. Its value at-the-money is

given by

c(F0 + ∆K)− 2c(F0) + c(F0 −∆K) = 2(∆K)2 ∂2c

∂K2

∣∣∣∣
K=F0

+ O[(∆K)4]

= (∆K)2e−rT f(S, T ; F0, 0)|S=F0 + O[(∆K)4].

The butterfly spread is used to trade the second-order sensitivity of the option price with

respect to the strike price, or the risk-neutral probability density at-the-money.

If we use the market quotations of the at-the-money option, the risk reversal and the but-

terfly spread to determine the level, slope and curvature of the implied volatility smirk, then

the risk-neutral standard deviation, skewness and excess kurtosis computed from Proposition

2 will preserve the market quotes of these option portfolios.

To present the intuition, we further simplify the result in Proposition 2.
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Proposition 3. The level, slope and curvature of the implied volatility smirk, (γ0, γ1,

γ2), and the risk-neutral standard deviation, skewness and excess kurtosis, (σ, λ1, λ2) are

related by the following asymptotic expansion formulas:

γ0 =

(
1− λ2

24

)
σ +

λ1

4
σ2
√

τ + O(σ3τ),

γ1 =
λ1

6
(
1− λ2

24

) σ̄

σ
+

λ2

(
1− λ2

24

)− λ2
1

2

12
(
1− λ2

24

)2 σ̄
√

τ + O(σσ̄
√

τ), (7)

γ2 =
λ2

24

σ̄2

σ2

1− λ2

16(
1− λ2

24

)2 +
λ1λ2

96

σ̄2
√

τ

σ

1− λ2

48(
1− λ2

24

)3 + O(σ̄2
√

τ).

Ignoring the second and higher-order terms and taking σ̄ = γ0, we have following leading-

order result:

γ0 ≈
(

1− λ2

24

)
σ, γ1 ≈ 1

6
λ1, γ2 ≈ 1

24
λ2

(
1− λ2

16

)
. (8)

If we further assume that λ2

16
¿ 1, then we obtain the following simple result:

γ0 ≈
(

1− λ2

24

)
σ, γ1 ≈ 1

6
λ1, γ2 ≈ 1

24
λ2 (9)

as a rule of thumb.

Proof. By expanding both sides of formula (6) for a small volatility, we may obtain the

result by using some algebra.

Remark 2. The leading order result in equation (9) was presented in Backus et al. (1997),

and Bouchaud and Potters (2003), see also, Potters, Cont and Bouchaud (1998).

The result in equation (9) is quite intuitive. It says that

The at-the-money implied volatility is equal to the risk-neutral standard

deviation with a small correction from the excess kurtosis, the slope of the

implied volatility smirk is one-sixth of the risk-neutral skewness, and the

curvature of the implied volatility smirk is one-24th of the risk-neutral excess

kurtosis.
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The result is approximately correct in the sense that all of these values are much smaller

than unity. In the next section, we show empirically that the condition is valid for the S&P

500 index options.

3 Data and Evidence

Following Duffie, Pan and Singleton (2000), Aı̈t-Sahalia, Wang and Yared (2001), and Er-

aker (2004), we use daily closing prices of the S&P 500 (SPX) index options to study the

phenomenon of the implied volatility smirk. The data from three days: October 30, Novem-

ber 4, and November 12, 20035, are downloaded from the website of the Chicago Board

Options Exchange (CBOE). The historical data from September 1998 to October 1999 are

provided by a commercial data supplier. The data of the risk-free rate are downloaded

from the website of United States Department of Treasury.

3.1 Data Processing and Fitting Methodology

We use the data from November 4, 2003 in Table 1 to demonstrate the procedure of

processing the data and producing the implied volatility function. All the options are

sorted in ascending order by the strike price ranging between 850 and 1125. The lowest

strike price is selected from the first out-of-the-money put with a non-zero bid price. The

highest strike is selected from the first out-of-the-money call with a non-zero bid price.6

There is a notable difference between the last sale price and mid-value of the bid and the

ask. Some of the last sale prices even fall outside of the range between the bid and the

ask. This is because the last sale happened some time before the market closed. Since it is

difficult to determine the time instant of the last sale, we do not use the last sale price as

a proxy for the daily closing price. We use the mid-value of the closing bid and the closing

ask instead. The at-the-money strike is K = 1055, at which the difference between the call

5These dates were randomly picked when we prepared the first draft of the paper.
6We follow the practice set up by the CBOE in computing the new volatility index, VIX. The definition

of the VIX and the methodology of computing it from options prices are clearly described in the CBOE
white paper, available at: http://www.cboe.com/micro/vix/vixwhite.pdf. The CBOE started trading VIX
futures on March 26, 2004, and VIX options on February 24, 2006. Carr and Wu (2006), Zhang and Zhu
(2006), and Zhu and Zhang (2007) study the price of VIX futures and their relationship with the underlying
S&P 500 index options.
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and the put prices is the smallest. The implied forward price is determined based on the

at-the-money option prices

F0 = Strike price + erτ × (Call price− Put price)

= 1055 + e0.9743%×17/365(11.9− 14.2) = 1052.70,

where the risk-free rate, r, is determined by the U.S. treasury yield curve rates on November

4, 2003, provided in Table 2. Since the yield curve starts from the one month rate and the

term of the options is only 17 days, an extrapolation technique is used to compute the rate

for 17 days, i.e.,

r = r1mth − (r3mth − r1mth)× 30− 17

61
= 0.97%− (0.95%− 0.97%)× 30− 17

61
= 0.9743%.

The forward index level, F0 = 1052.70, is slightly smaller than the closing index, S0 =

1053.25. This means that the implied dividend yield, q = r − ln(F0/S0), is slightly larger

than the risk-free rate, r.

With the implied forward index level, we now verify that the put-call parity holds for

the market prices of options with strikes other than at-the-money. The time value of an

option (call or put) is defined to be the difference between the option price and its intrinsic

value as follows

ctv(K) = c0(K)− e−rτ max(F0 −K, 0),

ptv(K) = p0(K)− e−rτ max(K − F0, 0).

If the put-call parity, c0(K)−p0(K) = (F0−K)e−rτ , is true, then the time values of the call

and the put must be the same, i.e., ctv(K) = ptv(K). Figure 2 shows the computed time

values of SPX index options on November 4, 2003 for both calls and puts that mature on

November 17, 2003. The two time value functions from the calls and puts almost collapse

on each other. This means that the put-call parity is valid for the market prices of options

with different strikes on the day.

Since the put-call parity holds, the market data of either the call or the put gives the

same value of the implied volatility. Following Carr and Wu (2003) and the practice set
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up by the CBOE in computing the new VIX index, we use out-of-the-money options to

compute the implied volatilities for different strikes. We choose the put option for the strike

price that is below the forward index, K < F0, and choose the call option for the strike

price that is above forward index, K > F0. The exclusive use of out-of-the-money options

is an industry convention that arises from their greater liquidity and model sensitivity than

their in-the-money counterparts.

A sample of implied volatility smirk data on November 4, 2003 for SPX options that

mature on November 21, 2003 is given in Table 3. The table contains the information

on the market prices and trading volumes of all the out-of-the-money calls and puts with

non-zero bid. When computing the moneyness, we use the CBOE volatility index, VIX, as

a proxy of the average volatility. We invert the Black-Scholes formula to obtain the implied

volatility. We then use a quadratic function to fit the implied volatility data by minimizing

the volume-weighted mean squared error

∑
ξ Volume× [IVmarket − IV (ξ)]2∑

ξ Volume

and obtain

IV (ξ) = 0.1447− 0.0189ξ + 0.00595ξ2 = 0.1447(1− 0.1308ξ + 0.0411ξ2),

or the smirk parameters of the day,

(γ0, γ1, γ2) = (0.1447,−0.1308, 0.0411).

When we do the fitting, we force the curve to pass through the point at the money. In

other words, the point (ξ, IV ) = (0, 0.1447) is given by the market data. Therefore, the

fitted implied volatility smirk gives exactly the same price as the market price for an option

at-the-money. There is no arbitrage between the model price and the market price for an

option at-the-money.

The implied volatility smirk is shown graphically in Figure 3. The dots are the implied

volatilities from the market prices of the out-of-the-money calls and puts with different

strikes. The solid line is a fitted quadratic curve. One may observe that the quadratic
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function approximates the implied volatility smirk very well. This is confirmed by the

fitted errors provided in Table 3. The root of the volume-weighted mean squared error is

only 0.0023, which is about 1.5% of the average volatility, VIX = 0.1655, on the day.

We now numerically study the impact of the slope and curvature of the implied volatility

on the option price. For one set of options with the same maturity, one may use three

different functions of moneyness to describe the implied volatility,

flat IV = γ0,

skewed IV = γ0(1 + γ1ξ),

smirked IV = γ0(1 + γ1ξ + γ2ξ
2).

The flat implied volatility function is a constant that corresponds to the Black-Scholes

model with the volatility equal to the ATMV. The skewed one is a linear function that

passes through the point at-the-money and incorporates the slope. The smirked one is a

quadratic function with both the slope and curvature. It becomes a pure smile if the slope,

γ1, is zero. The last case is thus the most general one. Figure 4 shows the difference between

three implied volatility functions with the market implied volatilities as a reference. The

market implied volatilities, shown as black dots in the figure, is the data from November

4, 2003 for the November SPX options.

Table 4 shows the option prices computed by using the Black-Scholes formula with flat,

skewed, and smirked volatility functions. The root of the volume weighted mean squared

error is 78 cents for the flat implied volatility function (or the Black-Scholes constant

volatility case), 31 cents for the skewed one, and 12 cents for the smirked one. The slope

reduces the error by more than 60%, and the curvature reduces the remaining error by

another 60%. With both the slope and the curvature, the final error is only 12 cents,

which is smaller than the smallest bid-ask spread. Within all the traded options listed in

Table 1, the SPX call with a strike of 1125 has the smallest bid-ask spread of 15 cents.

The smirked implied volatility function is therefore good enough to capture the trend of the

implied volatility – moneyness curve with the root of volume weighted mean squared error

smaller than the smallest bid-ask spread.
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Figure 5 shows the option price and the price error as functions of the strike for different

implied volatility functions, together with the trading volumes. It is quite impressive that

the price given by the Black-Scholes formula with a smirked implied volatility function is

so close to the market prices of the traded options.

With the level, slope and curvature of the implied volatility smirk already determined,

(γ0, γ1, γ2) = (0.1447,−0.1308, 0.0411), solving the three equations in (6) numerically gives

the three risk-neutral cumulants:

standard deviation σ = 0.1506,

skewness λ1 = −0.6992,

excess kurtosis λ2 = 0.8065.

To verify Proposition 3, substituting these risk-neutral cumulants into the right-hand-side

of the three equations in (7), by taking the first terms in each equation, i.e., equation (8),

we have the approximate values of the smirk parameters, i.e., the level, slope and curvature,

(γ0, γ1, γ2) ≈ (0.1455,−0.1325, 0.04126).

By taking the first two terms in each equation, we obtain the set of smirk parameters as

(γ0, γ1, γ2) ≈ (0.1447,−0.1308, 0.0410),

which is identical to the given set of values except the tiny difference in the curvature

(0.0410 vs. 0.0411) .

This numerical exercise shows that the typical smirk parameters computed by using the

first two terms of the three equations in (7) in Proposition 3 are almost identical to those

given by three equations in (6) in Proposition 2.

3.2 Empirical Evidence

In the same way, we process the option data for November 4, 2003 for all available matu-

rities, Nov-21-03, Dec-19-03, Jan-16-04, Mar-19-04, Jun-18-04, Sep-17-04, Dec-17-04, and
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Jun-17-05, with times to maturity of 17, 45, 73, 136, 227, 318, 409, and 591 days, respec-

tively. Shown in Figure 6 are the implied volatility curves together with the bar charts of

trading volumes.

The numerical values of the term structure of the smirk parameters7 are listed in Table

5 together with the term structures of interest rates and trading volumes. The first and the

second nearest options are heavily traded. They occupy 80% of the total trading volume.

The term structure of the interest rate is upward sloping. The term structure of the ATMV

is slightly upward sloping, ranging from 14% to 18%. The term structure of the slope is

quite flat with a value near −0.17. The implied volatility smirk does not flatten out as

maturity increases up to almost two years. This pattern has been documented qualitatively

and explained with a Finite Moment Log Stable process by Carr and Wu (2003). The term

structure of the curvature is oscillating between 0 and 0.04.

To intuit the evolution of the term structure of the smirk parameters, we processed the

market data for three different days, October 30, 2003, November 4, 2003 and November

12, 2003. The final numerical values of the term structures are listed in Table 6. They are

presented graphically in Figure 7. In general, the term structures are stable with longer

maturities. The term structure of the ATMV follows a more regular pattern than the other

two term structures. This means that investors have a better understanding of the ATMV

than the slope and curvature, probably because the latter two quantities have never been

explicitly defined and documented in the literature.

In order to gain an idea about the time-change dynamics of the implied volatility smirk,

we study the time series from September 25, 1998 to September 3, 1999 of market prices

of SPX options with the same maturity date, September 16, 1999. After determining the

level, slope and curvature of the implied volatility smirk for each day, we present the time

series of the three parameters in Figure 8. The dynamics of the ATMV seems to be a

mean-reverting process. The implied volatility slope increases from −0.35 to −0.2 as the

time to maturity becomes shorter. The implied volatility curvature seems to be more noisy

7The term structure of implied volatility has been studied by Heynen, Kemna and Vorst (1994), Xu
and Taylor (1994), Zhu and Avellaneda (1997), and Das and Sundaram (1999).
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than the other two parameters. The dynamics of the implied volatility slope and curvature

basically describe the dynamics of risk-neutral skewness and excess kurtosis. Their relation

with the subsequent realized statistical skewness and excess kurtosis is an interesting topic

for further research8.

4 Model calibration based on the implied volatility

smirk

Option pricing models are developed with certain numbers of embedded parameters, which

are usually determined from market information by following one of two approaches. The

first one is to estimate the parameters by using historical data of underlying stock prices.

The problem with this approach is that the historical data may not reflect information

from stock returns in the future. Practitioners often use a second approach to calibrate the

parameters from the current market prices of liquidly-traded options.

Calibrating an option pricing model is a difficult task. It is commonly recognized that

one should calibrate a model at least on a daily basis to include the latest information from

the financial markets. At the end of a trading day, we have a closing price for each option

with different strikes and maturities. Their trading volumes are different. Some of them,

for example, the ones with the first and the second nearest maturities, are liquid. Others

are not. The price of illiquid options does not tell us much information about the financial

market.

One way to calibrate the option pricing model is to minimize the sum of the squared

errors of all available options with different strikes and maturities. The liquidity effect can

be accounted for by the volume weighting in the least squares approach. The procedure,

initiated by Bakshi, Cao and Chen (1997), has become a standard in the empirical study

of model performance (see, e.g., Carr et al (2003) and Huang and Wu (2004)). But this

method suffers from two problems. First, the nonlinear least squares model is well known

to be unstable, especially with a large set of parameters, such as the ten parameters in a

8For example, Navatte and Villa (2000) studies the information content of implied volatility, skewness
and kurtosis by using long-term CAC 40 options.
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time-changed Lévy process in Huang and Wu (2004). The solution obtained with some

standard commercial packages may not be unique. For the case when the solution is not

unique, the values of the parameters are not meaningful. Second, the procedure is purely

numerical. It is not easy to monitor and to compare the pricing errors of options with

different maturities.

We propose a new maturity-based and liquidity-based calibration. The idea is to use

the distilled information of the term structure of smirk parameters. Since we have already

considered the liquidity issue in fitting the value of these parameters, all we need to do is

to force the term structure of the smirk parameters implied from an option pricing model

to pass through the points of the market’s term structures, from the first nearest term9 to

the second nearest one and so on.

The proposed method has two advantages: First, it is semi-analytical. This allows us

to determine n model parameters by solving n equations. The problem of finding the root

of n equations is easier to solve than the minimization problem with n unknowns. Second,

the calibration procedure is more transparent. By comparing the market and model term

structures of the smirk level, the slope and the curvature, we are able to monitor the

performance of the calibration for each maturity.

For example, in the Black-Scholes (1973) model, the stock price is modelled as

dSt = (r − q)Stdt + σStdBt,

where r is the risk-free rate, q is the continuous dividend yield, and Bt is the standard

Brownian motion. It has only one parameter, i.e., volatility, σ. One may simply calibrate

the model by using ATMV, γ0, for the volatility, σ. In fact, this is a classical way of using

the Black-Scholes model.

In the following, we present the calibration of two parsimonious models and study the

term structure of the smirk parameters implied in the calibrated option pricing models.

9Following the convention set up by CBOE in computing the new VIX index, with 8 days left to
expiration, we roll to the second contract month in order to minimize pricing anomalies that might occur
close to expiration.
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4.1 The Constant Elasticity of Variance (CEV) Model

In a risk-neutral world, the price of a stock, St, is assumed to follow a diffusion process

dSt = (r − q)Stdt + σSα
t dBt, (10)

where σ and α are constants. The variance in stock returns is given by vt = σ2S2α−2
t , and

the elasticity of variance, defined by St

vt

∂vt

∂St
, is therefore a constant, 2α− 2.

Cox (1975) finds that, with a power transformation, Xt = S
2(1−α)
t , the CEV process can

be transformed into a square-root process:

dXt = [(1− α)(1− 2α)σ2 + 2(1− α)(r − q)Xt]dt + 2(1− α)σ
√

XtdBt. (11)

Feller (1951) studies the transition probability of the square-root process with a Laplace

transformation approach and provides an analytical formula for the density function. The

price of a European call option can therefore be determined with a risk-neutral valuation

formula. The term structure of the smirk parameters implied in the CEV model is given

in the following proposition.

Proposition 4. For 0 < α < 1, the smirk parameters, (γ0, γ1, γ2), implied in the CEV

model can be determined by

1− 2N (d) = Q

(
2x; 2 +

1

1− α
, 2x

)
+ Q

(
2x;

1

1− α
, 2x

)
− 1, (12)

N(−d) + n(d)
γ0

σ̄
γ1 = Q

(
2x;

1

1− α
, 2x

)
, (13)

1

γ0

√
τ

(
1− d2 γ2

0

σ̄2
γ2

1 +
2γ2

0

σ̄2
γ2

)
n(d) = 4(1− α)x p

(
2x; 2− 1

1− α
, 2x

)
, (14)

where p(z; n, λ) is the non-central chi-square distribution function with n degrees of freedom

and non-centrality parameter λ, Q(z; n, λ) is the complementary non-central chi-square

distribution, and

d = −1

2
γ0

√
τ , x =

(r − q)F
2(1−α)
0

(1− α)σ2 [e2(1−α)(r−q)τ − 1]
.

Proof. See Appendix C.
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The CEV model has two parameters, volatility, σ, and the elasticity constant, α. The

exercise of calibrating the CEV model requires using the ATMV, γ0, and slope, γ1, of the

nearest term (the most liquid one) of the implied volatility smirk to determine these two

constants. A general intuition is that the slope is negative for 0 ≤ α < 1, zero for α = 1

(the Black-Scholes case) and positive for α > 1. The smaller the value of α between 0 and

1, the larger the absolute value of the slope.

For the data from November 4, 2003 processed in the last section, γ0 = 0.1447, γ1 =

−0.1308, we find that the largest negative slope that the CEV model can produce is γ1 =

−0.0179 for α = 0, which is much smaller than the required value from the market data.

The result indicates that the CEV model cannot produce enough negative risk-neutral

skewness in the short term, simply because the model is based on a pure diffusion. One

needs negative jumps in the underlying process to accomplish the task. With the best set

of calibrated parameters, (σ, α) = (152.36, 0), we compute the term structure of the smirk

parameters implied in the CEV model from Proposition 4. The results are given in Table

7 numerically and shown in Figure 9 graphically together with results from the market

data. An interesting observation is that the CEV model is able to produce a large negative

skewness in the long term.

4.2 The Finite Moment Log Stable (FMLS) model

Recently, Carr and Wu (2003) proposed a Finite Moment Log α−Stable (FMLS) process

for stock prices,

dSt = (r − q)Stdt + σStdLα,−1
t , (15)

where σ is a constant, dLα,−1
t has an α−stable distribution with zero drift, dispersion of

dt1/α, and a skew parameter of −1: Lα(0, dt1/α,−1). The α−stable process is a pure jump

Lévy process when 0 < α < 2. When α = 2, the α−stable process degenerates to a standard

Brownian motion multiplied by
√

2, i.e., L2,β
t =

√
2 Bt.

The stock price at a future time, T , is then written explicitly as

ST = Ste
(r−q+µ)τ+σLα,−1

τ , τ = T − t,
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or

ln(ST /St) ∼ Lα((r − q + µ)τ, στ 1/α,−1), (16)

where the convexity adjustment term is given by µ = σα sec πα
2

to ensure the martingale

condition, EQ
t [ST ] = Ste

(r−q)τ . The characteristic function of ln(ST /St) is given by (Carr

and Wu 2003)

f(τ ; φ) = EQ
t

[
eiφ ln(ST /St)

]
= eiφ(r−q)τ+(iφ−(iφ)α)µτ . (17)

The term structure of the smirk parameters implied in the FMLS model is given in the

following proposition.

Proposition 5. For 1 < α < 2, the smirk parameters, (γ0, γ1, γ2), implied in the FMLS

process option pricing model can be determined by

1− 2N (d) =
1

π

∫ ∞

0

Re

[
e(iφ+1−(iφ+1)α)µτ − e(iφ−(iφ)α)µτ

iφ

]
dφ, (18)

N(−d) + n(d)
γ0

σ̄
γ1 =

1

2
− 1

π

∫ ∞

0

Re

[
e(iφ−(iφ)α)µτ

iφ

]
dφ, (19)

1

γ0

√
τ

(
1− d2 γ2

0

σ̄2
γ2

1 +
2γ2

0

σ̄2
γ2

)
n(d) =

1

π

∫ ∞

0

Re[e(iφ−(iφ)α)µτ ]dφ, (20)

where µ = σα sec πα
2

is the convexity adjustment.

Proof. See Appendix D.

The model has only two parameters, (σ, α), as well. Similar to the CEV model, one

should use the ATMV, γ0, and slope, γ1, of the implied volatility smirk of the nearest term

to calibrate the model.

On November 4, 2003, the VIX index level was σ̄ = 0.1655. The ATMV was γ0 = 0.1447.

The slope was γ1 = −0.1308. The time to maturity of the nearest term was τ = 17/365.

Then, d = −1
2
γ0

√
τ = −0.0156141. The task of calibrating the FMLS process option

pricing model requires solving the following two equations

1

π

∫ ∞

0

Re

[
e(iφ+1−(iφ+1)α)τσα sec πα

2 − e(iφ−(iφ)α)τσα sec πα
2

iφ

]
dφ = 1− 2N (d) = 0.0124577,
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1

2
− 1

π

∫ ∞

0

Re

[
e(iφ−(iφ)α)τσα sec πα

2

iφ

]
dφ = N(−d) + n(d)

γ0

σ̄
γ1 = 0.460611

for two unknowns, the volatility parameter, σ, and the tail index, α. This task can be

accomplished within a second by using three lines of Mathematica code. The result is

σ = 0.1086, α = 1.8141.

With this set of calibrated parameters, we can compute the term structure of the smirk

parameters implied in the FMLS process option pricing model from Proposition 5. The

results are presented in Table 7 numerically and shown in Figure 9 graphically together

with those from the CEV model and the market data. A direct comparison shows that

the FMLS model is much better than the CEV model in terms of capturing the slope of

the implied volatility smirk. This observation, which agrees with Carr and Wu (2003),

indicates that the underlying process is indeed having jumps rather than a simple pure

diffusion.

Other models, such as the jump-diffusion model of Merton (1976), the stochastic volatil-

ity model of Heston (1993), the variance Gamma process of Madan, Carr and Chang (1998),

the affine jump diffusion model of Duffie, Pan and Singleton (2000), and the time-changed

Lévy process of Carr et al. (2003), and Carr and Wu (2004) have more parameters. More

points from the term structure of the smirk parameters are needed in calibration. The

details of implementing our calibration procedure will be presented in a subsequent paper.

5 Conclusion

In this paper, we propose to use a quadratic function to quantify the shape (level, slope

and curvature) of the implied volatility smirk. Then, we link the quadratic smirk shape to

the risk-neutral return density and cumulants. We also show how such links can be used

to calibrate and compare different models.

Empirical evidence from S&P 500 index options shows that a quadratic function with

both slope and curvature fits the implied volatility smirk very well. The volume-weighted

error can be smaller than the smallest bid-ask spread of traded options. With these new
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quantities well defined, we are able to study the term structure, its evolution and the

time-change dynamics of an implied volatility smirk.

Our research suggests that the three term structures of the at-the-money implied volatil-

ity, slope and curvature should be constructed on a daily basis. These term structures

distilled from the current prices of options with different strikes and maturities provide

a lot of information about an investor’s fair expectations on the index return distribution

over different terms in the future. They should therefore be used to calibrate option pricing

models.

A Proof of Proposition 1

Since the price of a European call is given by the Black-Scholes formula with a quadratic

implied volatility function, i.e.,

c0 = F0e
−rτN(d∗ + IV

√
τ)−Ke−rτN(d), (21)

where

d∗ =
ln(F0/K)− 1

2
IV 2τ

IV
√

τ
, IV = γ0(1 + γ1ξ + γ2ξ

2), ξ =
ln(K/F0)

σ̄
√

τ
,

then the risk-neutral probability can be recovered by Breeden and Litzenberger’s (1978)

formula,

F (S, T ; F0, 0) = 1 + erτ ∂c0

∂K

∣∣∣∣
K=S

, f(S, T ; F0, 0) = erτ ∂2c0

∂K2

∣∣∣∣
K=S

.

With some algebra, one may obtain formulas (3, 5) in Proposition 1.

B Proof of Proposition 2

Suppose in a risk-neutral world, the underlying stock price at maturity, Sτ , is modelled by

Sτ = F0e
(− 1

2
σ2+µ)τ+σ

√
τy, (22)
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where µ is the convexity adjustment, y is a random number with mean zero, variance 1,

skewness10 λ1, and excess kurtosis λ2. If y is normally distributed, then µ = 0. The

probability density of y is given by the Edgeworth series expansion11

f(y) = n(y)− λ1

3!

d3n(y)

dy3
+

λ2

4!

d4n(y)

dy4
, (23)

where n(y) is the standard normal density function given by (4)12.

The martingale condition in the risk-neutral probability measure requires that

F0 = EQ
0 [Sτ ] = EQ

0 [F0e
(− 1

2
σ2+µ)τ+σ

√
τy], or EQ

0 [e(− 1
2
σ2+µ)τ+σ

√
τy] = 1,

which determines the convexity adjustment term,

µ = −1

τ
ln

[
1 +

λ1

3!
(σ
√

τ)3 +
λ2

4!
(σ
√

τ)4

]
.

The price of a European call option can be computed with the Harrison and Kreps (1979),

and Harrison and Pliska (1981) risk-neutral valuation formula,

c∗0 = e−rτEQ
0 [max(Sτ −K, 0)] = e−rτ

∫ +∞

−d2

(F0e
(− 1

2
σ2+µ)τ+σ

√
τy −K)f(y)dy,

where

d2 =
ln(F0/K) + (−1

2
σ2 + µ)τ

σ
√

τ
.

With integration by parts, we have the following formula13

c∗0 = [F0e
−rτN(d1)−Ke−rτN(d2)]

[
1 +

λ1

3!
(σ
√

τ)3 +
λ2

4!
(σ
√

τ)4

]

+Ke−rτ

(
λ1

3!
A +

λ2

4!
B

)
σ
√

τ , (24)

10The skewness, λ1, and excess kurtosis, λ2, of a random number, x, are defined by λ1 = κ3/κ
3/2
2 , λ2 =

κ4/κ2
2, where κi, i = 1, 2, 3, 4 are the first four cumulants, given by κ1 = E(x), κ2 = E(x− κ1)2 = V ar(x),

κ3 = E(x− κ1)3, κ4 = E(x− κ1)4 − 3κ2
2.

11An explanation of the Edgeworth series expansion method can be found in Chapter 3 (page 25) in
Kolassa’s (1997) book. A moment expansion approach to option pricing was studied by Airoldi (2005).

12Here we use Edgeworth series expansion to expand the unknown return distribution near a normal
distribution. Jarrow and Rudd (1982) expand the unknown price distribution near a lognormal distribution
and find a different option-pricing formula, see e.g., Corrado and Su (1997) for an empirical test of Jarrow
and Rudd’s (1982) model with SPX options. It seems to us that expanding the return distribution is more
natural and consistent with the later advanced option-pricing models that model stock returns with a Lévy
process or a time-changed Lévy process, see e.g., Carr and Wu (2004).

13The formula was presented by Backus et al. (1997) in the context of currency options.
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where d1 = d2 + σ
√

τ , and

A = −n′(−d2) + σ
√

τ n(−d2) + σ2τN(d2) = −(d2 − σ
√

τ)n(d2) + σ2τN(d2),

B = n′′(−d2)− σ
√

τ n′(−d2) + σ2τ n(−d2) + (σ
√

τ)3N(d2)

= −(1− d2
2 + σ

√
τ d2 − σ2τ) n(d2) + (σ

√
τ)3N(d2).

This call option pricing formula is exact under the assumption that the risk-neutral prob-

ability density is given by equation (23).

We now match the two option pricing formulas given by equations (21) and (24). Ap-

plying the three conditions at the money,

(c0 − c∗0)|K=F0 = 0,
∂(c0 − c∗0)

∂K

∣∣∣∣
K=F0

= 0,
∂2(c0 − c∗0)

∂K2

∣∣∣∣
K=F0

= 0, (25)

gives the result in Proposition 2.

C Proof of Proposition 4

In order to prove Proposition 4, we need the following known results.

Lemma 1. For 0 < α < 1, the conditional risk-neutral transition probability density

function, f(ST , T ; St, t), is given by (Cox 1975)

f(ST , T ; St, t) = 2(1− α)k
1

2(1−α)
(
xw1−4α

) 1
4(1−α) e−x−wI− 1

2(1−α)
(2
√

xw),

= 4(1− α)k
1

2(1−α) w
1−2α

2(1−α) p

(
2w; 2− 1

1− α
, 2x

)
, (26)

where

k =
r − q

(1− α)σ2 [e2(1−α)(r−q)τ − 1]
, x = kS

2(1−α)
t e2(1−α)(r−q)τ , w = kS

2(1−α)
T ,

and Iν(z) is the modified Bessel function14 of the first kind of order ν, p(z; n, λ) is the prob-

14The modified Bessel function of the first kind of order, ν, is a solution of the ordinary differential
equation

W ′′ +
1
z
W ′ −

(
1 +

ν2

z2

)
W = 0.

The function can be written in a series form as follows:

Iν =
+∞∑

k=0

1
k! Γ(ν + k + 1)

(z

2

)2k+ν

.
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ability density function of a non-central chi-square distribution15 with n degrees of freedom

and non-centrality parameter λ.

The price of a European call option is given by16 (Cox 1975, Cox and Ross 1976,

Schroder 1989)

ct = Ste
−qτQ

(
2y; 2 +

1

1− α
, 2x

)
−Ke−rτQ

(
2y; 2− 1

1− α
, 2x

)

= Ste
−qτQ

(
2y; 2 +

1

1− α
, 2x

)
−Ke−rτ

[
1−Q

(
2x;

1

1− α
, 2y

)]
, (27)

where y = kK2(1−α), and Q(z; n, λ) is the complementary, non-central chi-square distribu-

tion function, defined by Q(z; n, λ) =
∫ +∞

z
p(u; n, λ)du.

For α > 1, the transition probability density function, f(ST , T ; St, t), is given by

f(ST , T ; St, t) = 2(α− 1)k
1

2(1−α)
(
xw1−4α

) 1
4(1−α) e−x−wI 1

2(α−1)
(2
√

xw), (28)

and the European call option pricing formula is

ct = Ste
−qτQ

(
2x;

1

α− 1
, 2y

)
−Ke−rτ

[
1−Q

(
2y; 2 +

1

α− 1
, 2x

)]
(29)

(Emanuel and MacBeth 1982).

Matching the two option pricing formulas in (27) and (21) with three conditions in (25)

yields Proposition 4.

D Proof of Proposition 5

We need the following known results.

Lemma 2. If the characteristic function of ln(ST /St) is denoted as f(τ ; φ) = EQ
t

[
eiφ ln(ST /St)

]
,

then the price of a European call option can be written as (Bakshi and Madan 2000)

ct = Ste
−qτΠ1(t, τ)−Ke−rτΠ2(t, τ),

15The probability density function of a non-central chi-square distribution can be written in terms of the
modified Bessel function as follows (Johnson and Kotz 1970):

p(z;n, λ) =
1
2
(z/λ)

1
4 (n−2)e−

1
2 (z+λ)I

n−2
2 (
√

λz).

16The complementary, non-central chi-square distribution function, Q(z;n, λ), satisfies following identity

Q(z;n, λ) + Q(λ; 2− n, z) = 1.
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where

Π1(t, τ) =
1

2
+

1

π

∫ ∞

0

Re

[
e−iφ ln(K/St) × f(τ ; φ− i)

iφ f(τ ;−i)

]
dφ,

Π2(t, τ) =
1

2
+

1

π

∫ ∞

0

Re

[
e−iφ ln(K/St) × f(τ ; φ)

iφ

]
dφ.

Applying the general formula to the FMLS process yields following result.

Lemma 3. If the underlying stock price is modelled by the FMLS process in equation (15),

then the price of a European call option is given by

ct = Fte
−rτΠ1(t, τ)−Ke−rτΠ2(t, τ), (30)

where

Π1(t, τ) =
1

2
+

1

π

∫ ∞

0

Re

[
e−iφ ln(K/Ft)+(iφ+1−(iφ+1)α)µτ

iφ

]
dφ,

Π2(t, τ) =
1

2
+

1

π

∫ ∞

0

Re

[
e−iφ ln(K/Ft)+(iφ−(iφ)α)µτ

iφ

]
dφ,

where Ft = Ste
(r−q)τ is the current froward price, and µ = σα sec πα

2
is the convexity

adjustment.

Matching the two option pricing formulas in (30) and (21) with three conditions in (25)

yields Proposition 5.
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Table 1: The market data of SPX options on November 4, 2003. The maturity date is
November 21, 2003. The time to maturity is τ = 17 days, or 17/365 year. The S&P 500
index level is S0 = 1053.25. The risk-free rate is r = 0.9743%. The implied forward index
level, computed by using formula F0 = K +erτ (c0(K)−p0(K)) with K = 1055 to minimize
|c0(K)− p0(K)|, is F0 = 1052.70. The fact of F0 < S0 implies that the expected dividend
yield, q = r − ln(F0/S0), is larger than the risk-free rate, r.

Call Put
Strike Last Sale Bid Ask Mid-value Vol Last Sale Bid Ask Mid-value Vol
850 204.6 201.6 203.6 202.6 0 0.1 0.05 0.15 0.1 0
875 160.4 176.7 178.7 177.7 0 0.15 0.1 0.3 0.2 0
900 150 151.8 153.8 152.8 0 0.2 0.15 0.25 0.2 0
925 135 126.9 128.9 127.9 0 0.3 0.3 0.5 0.4 307
935 124 116.9 118.9 117.9 0 0.55 0.25 0.55 0.4 26
945 0 107 109 108 0 1.3 0.35 0.65 0.5 0
950 102.5 102.1 104.1 103.1 10 0.55 0.45 0.6 0.525 832
960 0 92.2 94.2 93.2 0 0.65 0.35 0.8 0.575 0
970 0 82.4 84.4 83.4 0 0 0.5 1 0.75 0
975 82 77.6 79.6 78.6 0 1 0.8 1.1 0.95 1362
980 72.5 72.7 74.7 73.7 1 1.05 0.8 1.3 1.05 34
985 63 67.9 69.9 68.9 0 1.3 1 1.45 1.225 347
990 70.5 63.1 65.1 64.1 0 1.4 1.2 1.65 1.425 188
995 58.6 58.3 60.3 59.3 13 1.7 1.6 1.9 1.75 1109
1005 49 49 51 50 45 2.3 2.25 2.6 2.425 493
1010 44.6 44.5 46.5 45.5 146 2.9 2.4 3.2 2.8 190
1015 40 40 42 41 29 3.7 2.9 3.7 3.3 965
1020 39.7 35.7 37.7 36.7 6 3.6 3.6 4.3 3.95 1118
1025 31.9 31.5 33.5 32.5 1952 4.6 4.5 5.1 4.8 2005
1030 28.5 27.4 29.4 28.4 9 5.5 5.1 6 5.55 373
1035 23.7 24 25.6 24.8 187 7.2 6.3 7.5 6.9 2525
1040 20.3 20 22 21 107 8.2 7.7 8.5 8.1 1190
1045 17 17 18.5 17.75 14 10.1 9.4 10.6 10 94
1050 14.5 14.5 15.4 14.95 3033 11.9 11.6 12.2 11.9 3478
1055 11.5 11.1 12.7 11.9 1823 14.5 13.4 15 14.2 627
1060 9.8 9.5 10 9.75 2603 17 16 17.2 16.6 188
1065 7.1 7.2 8.1 7.65 243 20 19 20.6 19.8 24
1070 5.5 5.4 6.4 5.9 2623 23.7 22.1 24.1 23.1 204
1075 4.1 4.1 4.7 4.4 1759 26.8 25.7 27.2 26.45 1704
1080 3.2 3.1 3.7 3.4 303 30 29.6 31.6 30.6 6
1085 2.4 2 2.8 2.4 79 0 33.7 35.7 34.7 0
1090 1.9 1.5 2 1.75 362 40 38 40 39 2
1095 1.1 1 1.5 1.25 10 0 42.5 44.5 43.5 0
1100 0.95 0.85 1.1 0.975 149 49 47.2 49.2 48.2 42
1115 0.45 0.3 0.5 0.4 32 0 61.6 63.6 62.6 0
1125 0.25 0.15 0.3 0.225 39 72 71.4 73.4 72.4 13
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Table 2: The U.S. daily treasury yield curve rates (%) between October 30, 2003 and
November 12, 2003.

Maturity
Date

1 mo 3 mo 6 mo 1 yr 2 yr 3 yr 5 yr 7 yr 10 yr 20 yr

10/30/03 0.97 0.96 1.04 1.32 1.86 2.39 3.29 3.83 4.36 5.25
10/31/03 0.96 0.96 1.04 1.31 1.85 2.36 3.27 3.80 4.33 5.20
11/03/03 0.97 0.96 1.05 1.33 1.90 2.44 3.34 3.88 4.40 5.25
11/04/03 0.97 0.95 1.03 1.31 1.86 2.40 3.28 3.81 4.33 5.19
11/05/03 0.96 0.96 1.05 1.35 1.94 2.46 3.35 3.88 4.38 5.24
11/06/03 0.95 0.96 1.06 1.38 2.01 2.55 3.43 3.96 4.45 5.32
11/07/03 0.95 0.96 1.07 1.40 2.04 2.60 3.47 3.99 4.48 5.33
11/10/03 0.92 0.97 1.07 1.39 2.06 2.63 3.49 4.00 4.49 5.34
11/12/03 0.92 0.95 1.06 1.39 2.05 2.59 3.45 3.95 4.44 5.29
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Table 3: The price and implied volatility on November 4, 2003 for out-of-the-money SPX
options that mature on November 21, 2003. Puts are chosen for strikes below the forward
index level, F0 = 1052.70. Calls are chosen for strike above the forward index level. The
implied volatility is the root that equates the Black-Scholes formula with the market price,
and the moneyness is defined as ln(K/F0)/(σ̄

√
τ), where τ = 17/365 year, and σ̄ = 16.55%

is the VIX closing index on the day. It is taken to be a proxy of the average volatility.
The fitted implied volatility, given by IV = 0.1447(1− 0.1308ξ + 0.0411ξ2), is obtained by
fitting the implied volatility with a quadratic function that passes through the point at-
the-money and minimizes the volume weighted mean squared error. RMSE, root of mean
squared error. RVWMSE, root of volume weighted mean squared error.

Strike Market Volume Moneyness IV. Fitted IV. FitEr
850 0.1 0 -5.9881 0.3760 0.4713 0.0953
875 0.2 0 -5.1765 0.3568 0.4020 0.0452
900 0.2 0 -4.3878 0.3081 0.3422 0.0341
925 0.4 307 -3.6206 0.2861 0.2911 0.0050
935 0.4 26 -3.3196 0.2655 0.2730 0.0075
945 0.5 0 -3.0217 0.2537 0.2561 0.0025
950 0.525 832 -2.8740 0.2451 0.2482 0.0031
960 0.575 0 -2.5808 0.2273 0.2331 0.0058
970 0.75 0 -2.2907 0.2159 0.2192 0.0033
975 0.95 1362 -2.1467 0.2144 0.2127 -0.0022
980 1.05 34 -2.0035 0.2070 0.2064 -0.0006
985 1.225 347 -1.8610 0.2019 0.2005 -0.0014
990 1.425 188 -1.7193 0.1965 0.1948 -0.0017

Put 995 1.75 1109 -1.5782 0.1936 0.1893 -0.0043
1005 2.425 493 -1.2983 0.1835 0.1792 -0.0043
1010 2.8 190 -1.1593 0.1773 0.1746 -0.0027
1015 3.3 965 -1.0210 0.1719 0.1702 -0.0018
1020 3.95 1118 -0.8835 0.1675 0.1660 -0.0015
1025 4.8 2005 -0.7466 0.1641 0.1621 -0.0020
1030 5.55 373 -0.6103 0.1571 0.1584 0.0013
1035 6.9 2525 -0.4747 0.1559 0.1550 -0.0009
1040 8.1 1190 -0.3398 0.150 0.1518 0.0017
1045 10 94 -0.2055 0.1498 0.1488 -0.0008
1050 11.9 3478 -0.0719 0.1460 0.1460 0.0001

ATM 1052.70 -0.0001 0.1447 0.1447 0.0000
1055 11.9 1823 0.0611 0.1435 0.1435 -0.00003
1060 9.75 2603 0.1935 0.1439 0.1412 -0.0026
1065 7.65 243 0.3253 0.1413 0.1391 -0.0022
1070 5.9 2623 0.4564 0.1393 0.1373 -0.0020
1075 4.4 1759 0.5869 0.1367 0.1356 -0.0011

Call 1080 3.4 303 0.7169 0.1375 0.1342 -0.0034
1085 2.4 79 0.8462 0.1348 0.1329 -0.0018
1090 1.75 362 0.9749 0.1346 0.1319 -0.0028
1095 1.25 10 1.1030 0.1344 0.1310 -0.0034
1100 0.975 149 1.2306 0.1375 0.1304 -0.0071
1115 0.4 32 1.6098 0.1426 0.1296 -0.0130
1125 0.225 39 1.8598 0.1468 0.1301 -0.0168

RMSE 0.0190
RVWMSE 0.0023
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Table 4: The prices and price errors computed by the Black-Scholes formula with flat,
skewed and smirked volatility functions for out-of-the-money SPX options. The set of
options used is the same as that in Table 3. The flat volatility function, IV = 0.1447, is
a constant given by at-the-money implied volatility. The skewed one, IV = 0.1447(1 −
0.1308ξ), is a linear function passing through the point at the money. The smirked one,
IV = 0.1447(1−0.1308ξ+0.0411ξ2), is a quadratic function obtained by fitting the implied
volatility. The errors are the difference between the computed prices and the market prices.
RMSE, root of mean squared error. RVWMSE, root of volume weighted mean squared
error.

Strike Market Volume Flat FlatEr Skew SkewEr Smirk SmirkEr
850 0.1 0 0 -0.1 0.0008 -0.0993 0.6163 0.5163
875 0.2 0 0 -0.2 0.0026 -0.1974 0.4933 0.2933
900 0.2 0 0 -0.2 0.0092 -0.1908 0.4368 0.2368
925 0.4 307 0.0001 -0.3999 0.0332 -0.3668 0.4493 0.0493
935 0.4 26 0.0005 -0.3995 0.0556 -0.3444 0.4797 0.0797
945 0.5 0 0.0022 -0.4979 0.0931 -0.4069 0.5307 0.0307
950 0.525 832 0.0042 -0.5209 0.1203 -0.4047 0.5664 0.0414
960 0.575 0 0.0142 -0.5609 0.2005 -0.3745 0.6646 0.0896
970 0.75 0 0.0432 -0.7068 0.3325 -0.4175 0.8127 0.0627
975 0.95 1362 0.0725 -0.8775 0.4272 -0.5228 0.9127 -0.0373
980 1.05 34 0.1187 -0.9313 0.5477 -0.5023 1.0355 -0.0145
985 1.225 347 0.1895 -1.0355 0.7006 -0.5244 1.1866 -0.0384
990 1.425 188 0.2953 -1.1298 0.8939 -0.5312 1.3727 -0.0523
995 1.75 1109 0.4494 -1.3007 1.1371 -0.6129 1.6024 -0.1476
1005 2.425 493 0.9723 -1.4527 1.8217 -0.6033 2.2365 -0.1886
1010 2.8 190 1.3844 -1.4156 2.2925 -0.5075 2.6693 -0.1307
1015 3.3 965 1.9306 -1.3694 2.8723 -0.4277 3.2030 -0.0970
1020 3.95 1118 2.6388 -1.3112 3.5816 -0.3684 3.8595 -0.0906
1025 4.8 2005 3.5377 -1.2623 4.4431 -0.3569 4.6634 -0.1366
1030 5.55 373 4.6557 -0.8943 5.4810 -0.0690 5.6425 0.0925
1035 6.9 2525 6.0190 -0.8811 6.7208 -0.1792 6.8266 -0.0734
1040 8.1 1190 7.6503 -0.4497 8.1885 0.0885 8.2462 0.1462
1045 10 94 9.5675 -0.4325 9.9090 -0.0910 9.9311 -0.0689
1050 11.9 3478 11.7824 -0.1178 11.9050 0.0050 11.9078 0.0078

1052.70 0.0000 0.0000 0.0000
1055 11.9 1823 12.0003 0.1103 11.8957 -0.0043 11.8977 -0.0023
1060 9.75 2603 9.8214 0.0714 9.4970 -0.2530 9.5167 -0.2333
1065 7.65 243 7.9350 0.2849 7.4135 -0.2365 7.4667 -0.1833
1070 5.9 2623 6.3262 0.4262 5.6442 -0.2558 5.7414 -0.1586
1075 4.4 1759 4.9754 0.5754 4.1794 -0.2207 4.3239 -0.0761
1080 3.4 303 3.8590 0.4590 3.0005 -0.3995 3.1885 -0.2115
1085 2.4 79 2.9510 0.5510 2.0815 -0.3186 2.3023 -0.0978
1090 1.75 362 2.2244 0.4744 1.3900 -0.3600 1.6285 -0.1215
1095 1.25 10 1.6525 0.4025 0.8898 -0.3602 1.1294 -0.1206
1100 0.975 149 1.2097 0.2347 0.5436 -0.4314 0.7689 -0.2061
1115 0.4 32 0.4341 0.0341 0.0887 -0.3113 0.2215 -0.1785
1125 0.225 39 0.2033 -0.0217 0.0188 -0.2062 0.0918 -0.1332

RMSE 0.7504 0.3591 0.1566
RVWMSE 0.7758 0.3127 0.1229
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Table 5: The term structure of smirk parameters on November 4, 2003. The trading
volume is the number of the out-of-the-money options with different strikes for the same
maturity. The discount rate is computed by using linear interpolation with the yield curve
on November 4, 2003 provided in Table 2. The smirk parameter set (γ0, γ1, γ2) is obtained
by fitting the implied volatility smirk with a quadratic function, IV (ξ) = γ0(1+γ1ξ+γ2ξ

2),
where ξ is the moneyness.

Maturity Trading Discount rate ATMV Slope Curvature
τ (days) volume r (%) γ0 γ1 γ2

17 26,661 0.9743 0.1447 -0.1308 0.0411
45 37,983 0.9651 0.1473 -0.1894 0.0158
73 4,066 0.9559 0.1509 -0.2141 0.0103
136 6,825 0.9896 0.1608 -0.2063 0.0049
227 4,848 1.0989 0.1683 -0.1623 0.0230
318 4,050 1.2381 0.1727 -0.1905 0.0425
409 3,987 1.3763 0.1759 -0.1688 0.0086
591 1,401 1.6506 0.1786 -0.1574 0.0309
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Table 6: The evolution of the term structure of smirk parameters from October 30, 2003 to
November 4, 2003 and then to November 12, 2003. The discount rate is computed by using
linear interpolation with the yield curve on the corresponding dates provided in Table 2.
The smirk parameter set (γ0, γ1, γ2) is obtained by fitting the implied volatility smirk with
a quadratic function, IV (ξ) = γ0(1 + γ1ξ + γ2ξ

2), where ξ is the moneyness.

Observed on October 30, 2003

Maturity (days) 22 50 78 141 232 323 414 596
Discount rate 0.9713 0.9667 0.9621 1.0040 1.1165 1.2557 1.3925 1.6618

ATMV γ0 0.1474 0.1528 0.1568 0.1661 0.1729 0.1776 0.1805 0.1833
Slope γ1 -0.1599 -0.1820 -0.1648 -0.1606 -0.1765 -0.1856 -0.1988 -0.2096

Curvature γ2 0.0220 0.0103 0.0190 0.0250 0.0109 0.0108 -0.0055 -0.0103

Observed on November 4, 2003

Maturity (days) 17 45 73 136 227 318 409 591
Discount rate 0.9743 0.9651 0.9559 0.9896 1.0989 1.2381 1.3763 1.6506

ATMV γ0 0.1447 0.1473 0.1509 0.1608 0.1683 0.1727 0.1759 0.1786
Slope γ1 -0.1308 -0.1894 -0.2141 -0.2063 -0.1623 -0.1905 -0.1688 -0.1574

Curvature γ2 0.0411 0.0158 0.0103 0.0049 0.0230 0.0425 0.0086 0.0309

Observed on November 12, 2003

Maturity (days) 9 37 65 128 219 310 401 583
Discount rate 0.9097 0.9234 0.9372 0.9947 1.1267 1.2908 1.4551 1.7842

ATMV γ0 0.1632 0.1553 0.1575 0.1658 0.1712 0.1743 0.1776 0.1798
Slope γ1 -0.1357 -0.1723 -0.1719 -0.2062 -0.2117 -0.2052 -0.1867 -0.1838

Curvature γ2 0.0256 0.0168 0.0291 0.0063 0.0049 0.0031 -0.0006 0.0188
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Table 7: The term structure of smirk parameters observed from the market data on Novem-
ber 4, 2003, and implied in calibrated option pricing models: the Constant Elasticity of
Variance (CEV) model and the Finite Moment Log Stable (FMLS) process.

The term structure of smirk parameters observed from the market data on November 4, 2003

Maturity (days) 17 45 73 136 227 318 409 591
Discount rate (%) 0.9743 0.9651 0.9559 0.9896 1.0989 1.2381 1.3763 1.6506

Dividend (%) 2.098 1.656 1.548 1.704 1.565 1.615 1.609 1.474
Forward price 1052.70 1052.35 1052.00 1050.45 1050.20 1049.80 1050.51 1056.27

ATMV γ0 0.1447 0.1473 0.1509 0.1608 0.1683 0.1727 0.1759 0.1786
Slope γ1 -0.1308 -0.1894 -0.2141 -0.2063 -0.1623 -0.1905 -0.1688 -0.1574

Curvature γ2 0.0411 0.0158 0.0103 0.0049 0.0230 0.0425 0.0086 0.0309

The term structure of smirk parameters implied in the CEV model, dSt = (r− q)Stdt + σSα
t dBt,

with calibrated parameters: (σ, α) = (152.36, 0)

Maturity (days) 17 45 73 136 227 318 409 591
ATMV γ0 0.1447 0.1447 0.1448 0.1449 0.1449 0.1450 0.1450 0.1447
Slope γ1 -0.0179 -0.0291 -0.0370 -0.0506 -0.0653 -0.0774 -0.0878 -0.1056

Curvature γ2 0.00011 0.00028 0.00046 0.00085 0.00143 0.00201 0.00259 0.00375

The term structure of smirk parameters implied in the FMLS process,
dSt = (r − q)Stdt + σStdLα,−1

t , with calibrated parameters: (σ, α) = (0.1086, 1.8141)

Maturity (days) 17 45 73 136 227 318 409 591
ATMV γ0 0.1447 0.1508 0.1537 0.1574 0.1603 0.1621 0.1634 0.1652
Slope γ1 -0.1308 -0.1195 -0.1137 -0.1059 -0.0992 -0.0947 -0.0913 -0.0863

Curvature γ2 0.0486 0.0416 0.0383 0.0341 0.0307 0.0285 0.0269 0.0246
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Figure 1: The risk-neutral probability density functions recovered from prices of options
with 17 days to maturity and flat, skewed, smiled and smirked implied volatility functions.
The solid line is the probability density function recovered from a flat implied volatility,
IV = γ0 = 0.1447. It is a lognormal distribution density function. The dashed line
is recovered from a skewed implied volatility, IV = γ0(1 + γ1ξ) = 0.1447(1 − 0.1308ξ).
The dash-doted line is recovered from a smiled implied volatility, IV = γ0(1 + γ2ξ

2) =
0.1447(1 + 0.0411ξ2). The doted line is recovered from a smirked implied volatility, IV =
γ0(1 + γ1ξ + γ2ξ

2) = 0.1447(1 − 0.1308ξ + 0.0411ξ2). The numerical values of γ0, γ1 and
γ3 are determined by fitting the market data on November 4, 2003 for the S&P 500 index
options that mature on November 21, 2003.
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Figure 2: The time value of SPX options as a function of strike price, K, on November
4, 2003 for both calls and puts that mature on November 21, 2003. The time to maturity
is τ = 17 days = 17/365 year. The discount rate over the period, derived from the
U.S. treasury yield curve on November 4, 2003, is r = 0.9743%. The implied forward
price, derived from put-call parity for the strike that minimizes the absolute difference
between a call and a put price, is F0 = 1052.70. The time value of an option is defined
as the difference between the option price and its intrinsic value. The time value of a
call is therefore ctv(K) = c0(K) − e−rτ max(F0 − K, 0), and the time value of a put is
ptv(K) = p0(K)−e−rτ max(K−F0, 0). The fact that the two functions, ctv(K) and ptv(K),
almost collapse on each other indicates that the put-call parity holds for any strike price,
K.
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Figure 3: The implied volatility smirk on November 4, 2003 for out-of-the-money SPX
options that mature on November 21, 2003. The implied volatility, IV , as a function
of moneyness, ξ, is regarded as an implied volatility smirk. The implied volatility, IV ,
is defined as the root that equates the Black-Scholes formula with the market price,

F0e
−rτN

(
ln(F0/K)+ 1

2
IV 2τ

IV
√

τ

)
− Ke−rτN

(
ln(F0/K)− 1

2
IV 2τ

IV
√

τ

)
= cmkt, and the moneyness, ξ, is

defined by ξ ≡ ln(K/F0)
σ̄
√

τ
. Here, the time to maturity is τ = 17 days = 17/365 year. The

discount rate over the period, derived from the U.S. treasury yield curve on November 4,
2003, is r = 0.9743%. The implied forward price, derived from put-call parity for the strike
that minimizes the absolute difference between a call and a put prices, is F0 = 1052.70.
The benchmark volatility, σ̄, is taken to be the VIX index reported by the CBOE on the
day, σ̄ = 16.55%. In the diagram, the dots are computed from the market prices of the
out-of-the-money calls and puts. The solid line is generated by fitting the market implied
volatility with a quadratic function that passes through the point at the money and min-
imizes the volume-weighted mean squared errors of the implied volatility. The bar chart
is the trading volume normalized by 20,000 contracts for the corresponding options traded
on November 4, 2003.
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Figure 4: The flat, skewed and smirked implied volatility functions together with market
implied volatilities (shown as dots) on November 4, 2003 for SPX options that mature on
November 21, 2003. The flat volatility function is IV = 0.1447, which is the ATMV. The
skewed one is a linear volatility function, IV = 0.1447(1− 0.1308ξ). The smirked one is a
quadratic function, IV = 0.1447(1− 0.1308ξ + 0.0411ξ2).
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Figure 5: The computed option price and its error as functions of the strike price on
November 4, 2003 for out-of-the-money SPX options that mature on November 21, 2003.
The computed option price is determined by using the Black-Scholes formula with flat,
skewed and smirked volatility functions. The flat one is IV = 0.1447, which is the ATMV.
The skewed one is a linear volatility function, IV = 0.1447(1− 0.1308ξ). And the smirked
one is a quadratic function, IV = 0.1447(1 − 0.1308ξ + 0.0411ξ2). The price error is the
difference between the computed price and the market price. At the money, K = F0 =
1052.70, three computed option prices are the same as the market price. Errors are therefore
zero. The option price error is shown together with the trading volume normalized by 5,000
contracts.
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Figure 6: The implied volatility smirks on November 4, 2003 for options with all available
maturities, including Nov-21-03, Dec-19-03, Jan-16-04, Mar-19-04, Jun-18-04, Sep-17-04,
Dec-17-04, and Jun-17-05. The times to maturity are 17, 45, 73, 136, 227, 318, 409, and
591 days, respectively. The dots are computed from the market prices of the out-of-the-
money calls and puts. The solid line is generated by fitting the market implied volatility
with a quadratic function that passes through the point at the money and minimizes the
volume-weighted mean squared errors of the implied volatility. The bar chart is the trading
volume normalized by 20,000 contracts for the corresponding options traded on November
4, 2003.
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Figure 7: The evolution of the term structure of the implied volatility smirk parameters
from October 30, 2003 to November 4, 2003 and then to November 12, 2003. The smirk
parameter set (γ0, γ1, γ2) is obtained by fitting the implied volatility smirks with a quadratic
function, IV (ξ) = γ0(1 + γ1ξ + γ2ξ

2), where γ0 is the ATMV, γ1 is the slope, γ2 is the
curvature, and ξ is the moneyness.
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Figure 8: The time-change dynamics of the ATMV γ0, the slope γ1 and the curvature γ2

of the implied volatility smirk for options with the maturity date, September 16, 1999.
The time series is from September 25, 1998 to September 3, 1999. The horizontal axis is
calendar time t (year). The maturity date is at t = 1.
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Figure 9: The term structure of smirk parameters implied in two calibrated option pricing
models and observed from the market data on November 4, 2003. The two models are the
Constant Elasticity of Variance (CEV) model, dSt = (r− q)Stdt+σSα

t dBt, with calibrated
parameters: (σ, α) = (152.36, 0), and the Finite Moment Log α-Stable (FMLS) process,
dSt = (r − q)Stdt + σStdLα,−1

t , with calibrated parameters: (σ, α) = (0.1086, 1.8141).
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