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Abstract

In this article, a multivariate threshold varying conditional correlation (TVCC) model is
proposed. The model extends the idea of Engle (2002) and Tse & Tsui (2002) to a thresh-
old framework. This model retains the interpretation of the univariate threshold GARCH
model and allows for dynamic conditional correlations. Techniques of model identification,
estimation and model checking are developed. Some simulation results are reported on the
finite sample distribution of the maximum likelihood estimate of the TVCC model. Real
examples demonstrate the asymmetric behaviour of the mean and the variance in financial
time series and the ability of the TVCC model to capture these phenomena.

Keywords: Multivariate TVCC model; Threshold; Conditional correlation; Volatility.

1 Introduction

During the last two decades, the modelling of conditional volatility in finance has been widely

discussed in the literature. As a model for financial data with a changing conditional variance,

Engle (1982) first proposed the autoregressive conditional heteroscedasticity (ARCH) model.

Bollerslev (1986) extended this to a generalized ARCH (GARCH) model. Engle & González-

Rivera (1991) further extended the GARCH model to a semiparametric GARCH model which
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does not assume a parametric form of the noise distribution. A tremendous literature now exists

for the GARCH model, for instance see Li, Ling & McAleer (2002).

There have been lots of interest in nonlinear time series models, for instance, the self-

exciting threshold autoregressive (SETAR) model of Tong (1978, 1980, 1983) and Tong & Lim

(1980). Various tests for nonlinearity have since been developed. Keenan (1985) constructed

a test for linearity which is an analogue of Tukey’s one degree of freedom for nonadditivity

test. Petruccelli (1986) proposed a portmanteau test for self-exciting threshold autoregressive

nonlinearity model. Moreover, Tsay (1989) proposed an efficient procedure for testing threshold

nonlinearity and successfully illustrated its use via the analysis of high-frequency financial data.

During the time, many researchers have also extended the ARCH model to a nonlinear ARCH

model, for example Li & Lam (1995). Li & Li (1996) extended the threshold ARCH model to

a double-threshold ARCH model, which can handle the situation where both the conditional

mean and the conditional variance specifications are piecewise linear given previous information.

Pesaran & Potter (1997) considered a floor and ceiling model for US output, which has a strong

double threshold model flavour. Brooks (2001) further extended the double-threshold ARCH

model to a double-threshold GARCH model.

After the development in univariate ARCH model, the study of multivariate ARCH models

becomes the next important issue. Bollerslev, Engle and Wooldridge (1988) suggested a basic

structure for a multivariate GARCH (MGARCH) model. Engle & Kroner (1995) proposed a

BEKK model which is a class of MGARCH model. Numerous applications of the multivariate

GARCH models have been applied to financial data. For instance, Bollerslev (1990) studied

the time-varying variance structure of the exchange rate in the European Monetary System.
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Kroner & Claessens (1991) applied the models to evaluate the optimal debt portfolio in multi-

ple currencies. Thereafter, Tsay (1998) proposed a procedure for testing multivariate threshold

nonlinearity models and successfully illustrated its use via the analysis of monthly U.S. interest

rates and two daily river flow series of Iceland. In order to satisfy the necessary conditions

presented by Engle, Granger and Kraft (1984) for the conditional-variance matrix of an es-

timated MGARCH model to be positive definite, Bollerslev (1990) suggested a parsimonious

constant-correlation MGARCH model. The necessary conditions for positive definiteness can be

easily imposed during the optimization of the log-likelihood function. Engle & Susmel (1993)

investigated some international stock markets that have similar time-varying volatility. The

recent work of Tse & Tsui (2002) and Engle (2002) described a parsimonious MGARCH model

that allows a time-varying correlation instead of a constant-correlation formulation for the con-

ditional variance equation. A different time-varying conditional correlation GARCH model has

been considered by Chan, Hoti & McAleer (2004). Pelletier (2003) introduced a regime switch-

ing model of constant correlations within each regime. McAleer (2005) argued that the Tse &

Tsui (2002) approach is preferred because no re-standardization is necessary in the definition

of the conditional correlation and adopted a Specific-to-General methodological approach to

illustrate a number of important developments in the modelling of univariate and multivariate

financial volatility. It is found that the time-varying correlation model could provide interesting

and more realistic empirical results. As demonstrated by our empirical examples, there could

be substantial difference in the correlational dynamics under different market situations. This

difference could be significant enough in affecting a practitioner’s decision on his forex portfolio.

In this paper, a multivariate threshold varying conditional correlation (TVCC) is proposed.
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The proposed model is an extension of the threshold approach for nonlinearity to the time-

varying correlation model of Tse & Tsui (2002). The conditional mean of the TVCC model

follows a threshold vector autoregressive model. In Section 2, the construction of a multivariate

TVCC model is discussed. A nonlinearity test for model building is presented in Section 3.

Model identification and estimation procedures of the proposed model are given in Section 4

and Section 5. Here, model identification includes estimating the AR orders, GARCH orders,

delay parameter and threshold parameter. Simulation results are provided in Section 6. In

Section 7, one empirical example of the proposed model using real data set is presented. It is

the exchange rate data considered in Tse & Tsui (2002). Finally some concluding remarks are

given in the last section.

2 A multivariate TVCC model

In this section, multivariate threshold varying conditional correlation models are presented.

Consider an n-dimensional multivariate time series Zt = (Z1t, . . . , Znt)
′, where t = 1, . . . , T . The

conditional variance matrix of Zt follows a time-varying structure,V ar(Zt|Ft−1) = Ht = [h]ij,t,

where Ft−1 is the information set {Zt−1, . . . , Z1} at time t − 1. Rewrite Ht = H
1

2

t H
1

2

t , where

H
1

2

t is the symmetric square-root matrix based on the spectral decomposition. Let et = H
1

2

t εt,

where εt ∼ N(0, I). Here, εt=(ε1t, . . . , εnt)
′ is assumed to be independently distributed and

et = (e1t, . . . , ent)
′ is conditionally normally distributed with mean zero and variance-covariance

matrix Ht. Here, v′ denotes the transpose of v.

A multivariate threshold varying conditional correlations (TVCC) model is the main focus

of this article. The present paper is an extension of the VC-MGARCH model of Tse & Tsui
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(2002) using the threshold approach. This model will have an appealing property of dynamic

correlations within a regime. In particular, the time varying conditional variance matrix Ht

is defined as follows: Ht = DtΓtDt. Define Dt as a n × n diagonal matrix where the ith

diagonal element is
√

hii,t. Then, Γt is the correlation matrix of Zt. Let l0 < l1 < . . . <

ls−1 < ls be a partition of the real line, where l0 = −∞ and ls = ∞. Let d be the delay

parameter and rt−d be a real-valued threshold variable. The j-th regime of a multivariate

TVCC(p1, . . . , ps; P1, . . . , Ps; Q1, . . . , Qs; s) model is given by

Zi,t = Φ
(j)
i,0 +

pj
∑

k=1

Φ
(j)
i,kZi,t−k + ei,t,

hii,t = c
(j)
i +

Pj
∑

k=1

α
(j)
i,khii,t−k +

Qj
∑

k=1

β
(j)
i,k e2

i,t−k, lj−1 < rt−d ≤ lj, j = 1, . . . , s,

(1)

where c(j), α
(j)
i,k and β

(j)
i,k , the parameters in the j-th regime, are non-negative and subject to

Pj
∑

k=1

α
(j)
i,k +

Qj
∑

k=1

β
(j)
i,k < 1.

The above constraint is sufficient and involves only the j-th regime. Denote L be the backshift

operator, the j-th regime of the vector TVCC model can be defined as follows:

Φ(j)(L)Zt = et, with et = Dtεt

Ht = C(j) +
Pj
∑

k=1

A
(j)
k Ht−k +

Qj
∑

k=1

B
(j)
k

→

e t−k lj−1 < rt−d ≤ lj, j = 1, . . . , s,

(2)

where
→

e t= (e2
1t, . . . , e

2
nt)

′, C(j) is a n × 1 vector, and A
(j)
k and B

(j)
k are k × k matrices. The

corresponding time-varying conditional correlation matrix Γt in the j-th regime follows

Γt = (1 − θ
(j)
1 − θ

(j)
2 )Γ + θ

(j)
1 Γt−1 + θ

(j)
2 Ψt−1, (3)

where Γ = {ρij} is a time-invariant n×n positive definite symmetric matrix with unit diagonal

elements and Ψt−1 is a n × n matrix whose elements are functions of the lagged standardized
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residuals ûi,t =
ei,t

√

hii,t

. The parameters θ
(j)
1 and θ

(j)
2 are non-negative subject to θ

(j)
1 + θ

(j)
2 ≤ 1.

Denote Ψt = {Ψij,t}. In Tse & Tsui (2002), the matrix Ψt−1 follows

Ψij,t−1 =

M
∑

h=1

ûi,t−hûj,t−h

√

√

√

√(
M
∑

h=1

û2
i,t−h)(

M
∑

h=1

û2
j,t−h)

, for M ≥ n. (4)

Tse & Tsui (2002) stated that M ≥ n is a necessary condition for Ψt−1 to be positive definite.

Thus, Γt would also be a positive definite correlation matrix with unit diagonal elements. As

a result, Ht is a positive-definite matrix and hence, H
1

2

t is also a positive definite matrix. Let

νj = (Φ
(j)′

0 , Φ
(j)′

1 , . . . , Φ
(j)′

pj )′, αj = (α
(j)′

1 , α
(j)′

2 , . . . , α
(j)′

Pj
)′, βj = (β

(j)′

1 , β
(j)′

2 , . . . , β
(j)′

Qj
)′ and θj =

(θ
(j)
1 , θ

(j)
2 )′, where Φ

(j)
k , α

(j)
k and β

(j)
k are the vectors of (Φ

(j)
i,k), (α

(j)
i,k ) and (β

(j)
i,k ) respectively.

Denote λ = (ν ′, α′, β′, θ′)′ and the true parameter vector be λ0. The parameter space Λ is

assumed to be a compact subspace of Euclidean space such that λ0 is an interior point in Λ. For

the sake of the development of TVCC model, the assumptions in Li & Li (1996) on threshold

model, Ling & McAleer (2003) on VARMA-GARCH and Chan, Hoti & McAleer (2004) on

GARCC are employed. They are summarized in the following regular conditions:

1. All the roots of |Φ(j)(L)| = 0 lie outside the unit circle. E(Zt|Ft−1) possesses an Ft-

measurable second-order stationary solution.

2. The matrix Γ is a finite and ρ(Γ) having a positive lower bound over Λ. All the element of

A
(j)
i and B

(j)
k are nonnegative; each element of C(j) has positive lower and upper bounds

over Λ; and all the roots of

∣

∣

∣

∣

∣

∣

Ik −
Pj
∑

i=1

A
(j)
i Li −

Qj
∑

k=1

B
(j)
k Lk

∣

∣

∣

∣

∣

∣

= 0 are outside the unit circle.

3. The parameters θ
(j)
1 and θ

(j)
2 are nonnegative.

6



4. Ik −
Pj
∑

i=1

A
(j)
i Li and

Qj
∑

k=1

B
(j)
k Lk are left coprime and satisfy other identifiability conditions

given in Jeantheau (1998) (see also Dunsmuir & Hannan, 1976).

Under conditions 1 - 3, by theorem 1 of Ling & McAleer (2003), {Zt, et, Ht} are strictly stationary

and ergodic. It is also assumed that in each regime there is at least one parameter with a value

different from the values of the corresponding parameter in the other regime so that together with

condition 4, the identification of the threshold model is ensured (Li & Li, 1996). For simplicity of

notation, the TVCC(p1, . . . , ps; P1, . . . , Ps; Q1, . . . , Qs; s) will be rewritten as TVCC(p; P ; Q; s)

if pj = p, Pj = P and Qj = Q for any j = 1, . . . , s. We may define the threshold structure

separately for the conditional mean and the conditional variance. However, the present approach

seems to be simpler in terms of presentation. If the threshold variable rt−d is the same for both

mean and variance, then it can be shown that the two approaches are the same. As in Tse

& Tsui (2002), the number of parameters is parsimonious and also the conditional correlations

are not restricted to be constants. The above models have s regimes and are piecewise linear

in the threshold space rt−d. The time series will be nonlinear in time when s is greater than

1. The threshold variable rt−d is assumed to be known, however the delay parameter d, the

number of regimes s, and the threshold values lj are unknown. The TVCC model extends both

Tong’s (1990) threshold model and Tse & Tsui’s (2002) time varying multivariate generalized

autoregressive conditional heteroscedasticity model in a natural way. It is shown in Tong & Lim

(1980) that the threshold model can capture various nonlinear phenomena.
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3 A Threshold Nonlinearity Test

A threshold nonlinearity test for multivariate GARCH time series models is proposed. The

proposed test follows the idea of Tsay (1998), H0 : s = 1 vs H1 : s > 1. Suppose observations

{Zt} are given, where t = 1, . . . , T . Consider the autoregression, Z ′

t = Y ′

t Φ + e′t, t = τ +

1, . . . , T , where τ = max(p, d), Yt = (1′, Z ′

t−1, . . . , Z
′

t−p)
′ is a (p + 1)n-dimensional regressor and

1 is a n × 1 vector of ones and Φ denotes a parameter matrix. Define S to be the set of values

taken by the threshold variable rt−d, i.e. S = {rτ+1−d, . . . , rT−d}. Let r(k) be the k-th smallest

element of S, and µ(k) be the corresponding time index of r(k). The arranged autoregression

based on the increasing order of rt−d is Z ′

µ(k)+d = Y ′

µ(k)+dΦk + e′µ(k)+d, k = 1, . . . , T − τ. where

Φk is the parameter matrix using data associated with the k-th smallest values of rt−d.

Let Φ̂k be the least squares estimate of Φk of the arranged autoregression. Let êµ(k+1)+d =

Zµ(k+1)+d−Φ̂′

kYµ(k+1)+d and ξ̂j,µ(k+1)+d = êj,µ(k+1)+d/
√

σ̂2
j + Y ′

µ(k+1)+dUj,kYµ(k+1)+d be respectively

the predictive residual and the standardized predictive residual of the arranged autoregression,

where σ̂2
j =

k
∑

i=1

ê2
j,µ(i)+d/(k − np− 1) is the residual mean squared error of the jth element of Zt

and Uj,k = (
∑k

i=1 Yµ(i)+dY
′

µ(i)+d)
−1(

∑k
i=1 ê2

j,µ(i)+dYµ(i)+dY
′

µ(i)+d)(
∑k

i=1 Yµ(i)+dY
′

µ(i)+d)
−1.

Consider the regression ξ̂′µ(i)+d = Y ′

µ(i)+dΨ+η′

µ(i)+d, i = 1, . . . , T −τ, where ξ̂µ(i)+d is the vector

(ξ̂j,µ(i)+d). The procedure is then to test H0 : Ψ = 0 vs Ha : Ψ 6= 0. We consider as in Tsay

(1998) the test statistic R(d) = (T − τ − (np+1))× (ln(detA0)− ln(detA1)), where d, the delay

parameter, indicates that the test depends on the threshold variable rt−d,

A0 =
1

T − τ

T−τ
∑

l=1

ξ̂µ(l)+dξ̂
′

µ(l)+d and A1 =
1

T − τ

T−τ
∑

l=1

η̂µ(l)+dη̂
′

µ(l)+d,

and η̂t is the least squares residual. Under the null hypothesis that Zt is linear, the standardised
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residuals ξt converges almost surely to a martingale difference sequence with a homogeneous

covariance matrix. Hence as in Tsay (1998, remark 2), by the functional central limit theorem

(Helland 1982, Thm. 3.3), (T−τ)A0 and (T−τ)A1 of the test statistic R(d) follow asymptotically

Wishart distributions. Using the same argument as that in the multivariate multiple regression

analysis (Johnson and Wichern 1998, p.308), R(d) is asymptotically a chi-squared random

variable with n(np+1) degrees of freedom (Tsay 1998, Thm. 2). Sometimes, threshold structure

might not be found in the mean equation, we can then replace the Zt’s by the square of the

residuals from a vector AR fit and repeat the above process (Li & Li 1996). The squared residuals

from the best-fitting AR model would be adopted in identifying the threshold structure of the

conditional variance equation.

4 Model Identification

The next tasks to be carried out are model identification and parameter estimation which will

be illustrated in this section and the next section respectively. For a simple linear AR model,

model identification can be easily handled by examining the process of autocorrelation function

(ACF) and partial autocorrelation function (PACF). However, when identifying a TVCC model,

it will not be the case as autocorrelations are uninformative about asymmetry in the model.

Arranged autoregressions are used as in Tsay (1989) for identifying the threshold model. In

the previous section, procedures for testing the presence of threshold nonlinearity are given.

Tsay (1989) pointed out that scatterplots of the arranged autoregressive estimates versus the

specified threshold variable could provide useful information in locating the thresholds. A

detailed discussion of the procedure would be given in the next section. Given the threshold
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variable, the AR orders of each regime can be identified by using the Akaike’s information

criterion (AIC).

Consider an AR-GARCH(p; P,Q) process, for simplicity, assuming the GARCH order P and

Q are the same. An AR-GARCH process is a process Zt given by Zi,t = Φi,0+
p

∑

k=1

Φi,kZi,t−k + ei,t,

with conditional variance given by σ2
i,t = ci +

P
∑

k=1

αi,kσ
2
i,t−k +

Q
∑

k=1

βi,ke
2
i,t−k. Let vi,t = e2

i,t − σ2
i,t.

Then we have e2
i,t = ci+

∑Max(P,Q)
k=1 (αi,k+βi,k)e

2
i,t−k+vi,t−

∑P
k=1 βi,kvi,t−k. Gouriéroux (1997, p.37)

shows that E(vi,t −
P

∑

k=1

βkvi,t−k|Ft−1) = 0. Therefore, the MGARCH model can be rewritten in

an ARMA representation. This is useful in identifying the GARCH orders P and Q initially.

The overall identification procedure is as follows.

1. Select the AR order p and the GARCH order P,Q. Usually, small lags for P and Q are

common in empirical applications.

2. Fit arranged autoregressions for a given p and each possible delays d, and perform the

threshold nonlinearity test. When nonlinearity is detected, choose the delay parameter d

which maximizes the test statistics R(d).

3. For given p and d, locate the value of the threshold parameter by using Tsay’ arranged

autoregression based on the scatterplots of the elements of Φ versus the threshold variable.

4. If the threshold structure is identified, calculate the residuals êt of the threshold AR model.

Then fit the entire TVCC model.

5. Use an information criterion such as the AIC or Bayesian information criterion (BIC) to

refine the AR orders, the GARCH orders, the delay and threshold parameters by repeating

steps (1) - (4), if necessary.
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In step 1, the maximum AR order p and GARCH order P,Q may be selected by examining

the ACF, PACF and the ACF of the squared series. In step 2, the set of threshold delays d may

be {1, 2, . . . max(p, P,Q)}. Note that in step 3, the scatterplots of deterministic function of AR

coefficient can be examined to locate the threshold parameters. Step 5 involves the refinement of

the model that may rely on the AIC. The AIC has been used in the literature in selecting TAR

models (Tong 1990). When all the parameters are fixed, the AIC is asymptotically equivalent

to selecting the model having the smallest residual variance using the conditional least squares

method (Tsay 1998).

5 Estimation Details and Model Checking

The specification of the threshold variable is a major issue in modelling threshold model, as it

plays a key role in the nonlinear structure of the model. Assuming the order p of the mean

equation is known, Tsay (1998) indicates that the nonlinearity test will have good power when

the delay d is correctly specified. Following Tsay (1998), the delay parameter is estimated by

the value d̂ that provides the greatest value of R(d) in the testing for threshold nonlinearity.

After obtaining the delay parameter, estimating the threshold values will be the next im-

portant issue. For ease of presentation, and without loss of generality, the case of s = 2 is

considered. Chan (1993) has shown the strong consistency of the estimator of a threshold

model. In particular, the threshold value is super-consistent in the sense that, l̂ = l + Op(1/N).

We now propose a method for estimating the threshold values. For simplicity, the same thresh-

old structure of the mean and conditional variance equations are considered. Extension to the

case of different threshold structure for the mean and variance equation is direct.
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Under the arranged autoregression framework, the values of the arranged AR estimates

become biased once the arranged autoregression crosses a threshold value. A scatterplot of

the arranged AR estimates versus the threshold variable should reveal such changes in the

AR estimates due to the bias and hence reveal also the locations of the threshold values. At

each candidate threshold value, the AR coefficients in the first and second regime, Φ
(1)
1 and

Φ
(2)
1 can be calculated respectively. However, the lag-1 AR coefficients have n different values

in each regime. In order to obtain a relevant scatterplot, we therefore have to consider a

real valued deterministic function which can differentiate between Φ
(1)
1 and Φ

(2)
1 . Here, the

deterministic function is defined as the mean of the absolute least squares estimates of the lag-

1 AR coefficients. A scatterplot can then be obtained by plotting the values of the suggested

deterministic function against the values of the threshold variable. As suggested in Tsay’s (1989)

if there is a threshold structure, a turning point would be observed around the true threshold.

The threshold value can thus be estimated by the position with the greatest change of slope in

the scatterplot. Given the threshold value, the conditional mean series becomes linear within

each regime. Moreover, the threshold structure also applies to the conditional variance. The

remaining task is to estimate the parameters. Denote Ijt = I(lj−1 < rt−d ≤ lj), where I(·) is the

indicator function. Assuming normality, et|Ft−1 ∼ N(0, Ht), the loglikelihood function (LLF),

L =
T

∑

t=1

Lt can be obtained. The conditional loglikelihood at time t, Lt is given by

Lt = −1

2

s
∑

j=1

(n log 2π + log |Ht| + e′tH
−1
t et)Ijt

= −1

2

s
∑

j=1

(n log 2π + log |Γt| +
n

∑

i=1

log σ2
i,t + e′tD

−1
t Γ−1

t D−1
t et)Ijt

The MLE of λ, λ̂ is obtained by maximizing L with respect to λ. Suppose that the threshold and

delay parameters are known and that λ0 is an interior point of a compact subset of Euclidean
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parameter space. Then, under the regularity conditions in this paper, the consistency of the

QMLE follows from Thm. 3 of Chan, Hoti & McAleer (2004) (see also Jeantheau 1998). Denote

G0 = −Eλ0
[∂2L/∂λ∂λ′]. Given d and the threshold value, the model is piecewise linear. It is

further assumed that

A1 . ∂2L/∂λ∂λ′ exists and is continuous in an open, convex neighbourhood of λ0.

A2 . T−1(∂2L/∂λ∂λ′)|λT
converges to a finite non-singular matrix G0 = T−1Eλ0

(∂2L/∂λ∂λ′)

in probability for any sequence λT such that λ̂
p→ λ0.

A3 . T−1/2 (∂L/∂λ)|λ0

d→ N(0, Ωλ), where Ωλ = lim T−1Eλ0
[(∂Lt/∂λ)(∂Lt/∂λ′)].

Denote Σ0 = Eλ0
[∂L/∂λ]. Following Chan, Hoti & McAleer (2004), the asymptotic distribution

of
√

n(λ̂−λ0)
d→ N(0, Σ−1

0 G0Σ
−1
0 ). If the conditional distribution of et is normal, then var(λ̂) =

G−1
0 asymptotically.

In checking the adequacy of the ARMA models with homogeneous conditional covariance

over time, residual autocorrelations has been widely applied. Li (1992) proposed the asymptotic

distribution of residual autocorrelations of a general threshold nonlinear time series model. Li &

Mak (1994) provided the asymptotic distribution of squared residual autocorrelations of a gen-

eral conditional heteroscedastic nonlinear time series model. Tse (2002) proposed an asymptotic

distribution of his residual-based diagnostics for conditional heteroscedasticity models. How-

ever, the asymptotic covariances of the standardized residual autocorrelations and the squared

residual autocorrelations are all very complicated. In order to simplify the complexity, Ling &

Li (1997) proposed and derived the asymptotic distribution of the lag l sum of squared residual

autocorrelations R̂l of the model with l = 1, . . . ,M . Here, the lag l sum of squared residual
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autocorrelations of i-th regime, R̂l
(i)

is defined as

R̂l

(i)
=

ni
∑

k=1

(ê
′

µi(k)Ĥ
−1
µi(k)êµi(k) − ẽ)(ê

′

µi(k)−lĤ
−1
µi(k)−lêµi(k)−l − ẽ)I(µi(k) − l ∈ Si)

ni
∑

k=1

(ê
′

µi(k)Ĥ
−1
µi(k)êµi(k) − ẽ)2

with ẽ =
1

ni

ni
∑

k=1

ê
′

µi(k)Ĥ
−1
µi(k)êµi(k) where ni is the number of observations in the i-th regime; µi(k)

denotes the time index of the kth smallest threshold variable in the ith regime and Si is the set

of values of the time index of the threshold variable in i-th regime. Intuitively, R̂l

(i)
is the lag l

sum of squared residual autocorrelations within ith regime. The statistic Q(M) = ni

M
∑

l=1

[

R̂l
(i)

]2

is assumed to be asymptotically a chi-square random variable with M degrees of freedom which

is the correct asymptotic distribution when êt are replaced by their population counter-part.

Hence, Q(M) can be used as a portmanteau statistic for testing the overall significance of R̂l

(i)

of the i-th regime. The empirical size and power of the statistic are studied in a simulation with

500 replications in the next section.

6 Simulations

Simulated realizations of the TVCC(1;1;1;2) model are used to investigate the finite sample

performance of the identification and estimation procedure in this section. In the simulation, 500

independent replications with sample sizes 1,000 and 2,000 of three different bivariate models

are generated. The parameters in the simulation model are shown in Table 1. In order to

eliminate the simulation bias, the first m0 observations generated will be deleted for ensuring

the stability of the generated series. Tsay (1998) suggested m0 = b5
√

T c, where T is the sample

size. Therefore, the whole generated series length is T +b5
√

T c, with the first 5
√

T observations
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discarded. As a result, the effect of the starting value, which is zero for all parameters, should

be negligible. These choices work well in the study. For simplicity, the threshold structure of

the mean equation and the conditional equation are the same. The threshold variable, rt−d

is considered to be the first entry of the series with delay parameter equals to one. Also, the

threshold value is set equal to zero and the value of M is 6.

As stated in Section 5, a real value d deterministic function should be defined for differenti-

ating between Φ
(1)
1 and Φ

(2)
1 . In the estimation process, the deterministic function is the mean

of the elements of Φ1. The average estimated results of the simulated models with sample sizes

1,000 and 2,000 are summarized in the tables below. The results are close to the true value.

Values inside parenthesis and braces are the standard deviations and the bias of the estimates.

The simulation was performed assuming that d and the threshold variable are known. From

Table 2 and Table 3, the estimates are in general fairly close to the true value with a small sam-

ple standard deviation. The estimates are closer to the true value while the standard deviations

becomes smaller as the sample size gets larger. A quadratic loss function, Q∗(θ) =
∑

(θ̂ − θ)2,

is considered to compute the discrepancy of the Monte Carlo estimates, θ̂, from the true co-

efficient values, θ. As expected, the values of the quadratic function for a longer series length

are noticeably smaller in each simulation model. These results suggest that the estimates have

small bias and standard errors. The result agrees with Chan (1993)’s strong consistency result

on the estimators. The overall empirical size and empirical power of the statistic Q(M) are

also considered. The constant conditional variance with threshold vector autoregressive model

is adopted as the null model for computing the empirical power. The proportion of rejections of

the Q(M) statistic, M = 6, based on the upper fifth percentile of the corresponding asymptotic

15



χ2
6 distribution is summarized in Table 2. Both empirical sizes and power seem acceptable.

7 Empirical Results

Empirical examples of the time-varying correlation multivariate threshold GARCH model are

presented for one interesting series considered by Tse & Tsui (2002). This set of data is trans-

formed to first order differences of log value in percentage. The data set consists of two exchange

rate (versus U.S. dollar) series, namely the Deutsche Mark and the Japanese Yen. There are

2,131 daily observations covering the period from January 1990 through June 1998.

Tse & Tsui (2002) suggested a parsimonious AR order of the conditional mean equation to

fit the data set. As there is a huge economic recession in Japan during the observed period, it is

believed that changes in the relationship between the economic variables and the exchange rates

may follow a threshold model. Let Z1,t be the Japanese Yen and Z2,t be the Deutsche Mark.

From the graph in Tse & Tsui (2002), it is found that the Deutsche Mark has a smaller variation

than the Japanese Yen. Using Z1,t−d as the threshold variable, the proposed nonlinearity test

is then performed. The asymptotic distribution of the R(d) statistics is χ2 with 6 df. The

nonlinearity test results, given in Table 5, clearly reject the linear hypothesis. Therefore, as

expected, the test strongly suggests threshold nonlinearity. The delay parameter d = 1 is chosen

from {1, 2, 3, 4}. Let the lagged values (d = 1) of Yen, Z1,t−1 be the threshold variable. Using

the mean of the estimated lag-1 AR parameter as the deterministic function, a scatterplot of the

deterministic function against the threshold variable is given in Figure 1. Using the proposed

method suggested in Section 5, the threshold value is estimated to be -0.0789. Refinement of

AR orders and GARCH orders are achieved using AIC. A TVCC(1;1;1;2) model is identified and
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the estimated results are given in Table 5. According to the model checking procedure discussed

in Section 5, the lag-l sum of squared (standardized) residual autocorrelations are also given in

Table 5 assuming M = 6. There are 890 observations belonging to the first regime. It can be

observed that the exchange rate data set has a double threshold structure.

During the observed period, the Japanese economy has been experiencing a great recession.

The Japanese Yen had a huge drop and the volatility of the exchange rate market is high.

Conditional correlations in each regime show a great fluctuation. From Table 5, it is found that

θ2 in regime 2 is essentially zero but it is very significant in regime 1. This demonstrates the

usefulness of our TVCC model as the correlational dynamic changes according to regimes. To

see this more clearly, the absolute rate of change of the conditional correlation coefficient is

calculated whenever regime switching occurs. The results are now summarised under Fig 2(b).

It shows that the change in regime is quite frequent and the rate of change is not a constant and

with a maximum value of about 0.71. It shows that the effect of Ψt−1 on Γt is regime dependent

and that the correlation ρ between the Japanese Yen and the Deutsche Mark of the two regimes

could be quite different. This difference may be big enough to affect a practitioner’s decision

on his forex portfolio. Note that volatility of the Deutsche Mark in regime 1 is larger than that

in regime 2. It is also larger than the volatility of Yen in regime 1 but this situation reverses

in regime 2. In Tables 5, it is shown that the total sum of the LLFs in the threshold model

is greater than the LLF in the non-threshold model. Note that the diagnostic statistic of the

threshold model for regime 1 and regime 2 are 3.03 and 5.52 respectively. Both values are not

significant under the reference χ2
6 distribution with a 5% significant level. It is believed that the

threshold model better represents the data.
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8 Conclusion

The model structure of the TVCC is an extension and a synthesis of the work of Tong(1978, 1980,

1983, 1990), Tsay(1989, 1998), Tse & Tsui (2002) and Engle (2002). The conditional variance

matrix is positive definite and the conditional correlations are allowed to be non-constants. The

number of parameters of the model is also parsimonious. A modelling methodology is proposed

for the TVCC model. Extensions of Tsay’s identification procedures are made to identify the AR

orders, GARCH orders, delay parameters and threshold parameters. Some simulation results

are presented. For empirical applications, the TVCC model is applied to the data sets in Tse

& Tsui (2002). The obtained TVCC models seem to capture well the threshold structure in

the series. This suggests that the proposed TVCC model should be a potentially useful tool in

modelling financial time series.
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Figure 1: Scatterplot of deterministic function versus the threshold variable
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φ1 0.7 0.4 0.4 0.2 0.7 0.4 0.4 0.2
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Table 2: Diagnostic statistics with 500 replications
Series length

1000 2000
Regime size power size power

First 0.042 0.5982 0.038 0.6196
Second 0.046 0.5776 0.044 0.5994

Table 3: Estimation result from 500 simulated series with series length 1000
model 1 model 2

regime first second first second

variable 1 2 1 2 1 2 1 2

φ0 0.0968 0.0994 0.0888 0.0948 0.0973 0.1012 0.0911 0.0926
(0.0634) (0.0363) (0.0485) (0.0205) (0.0637) (0.0378) (0.0514) (0.0298)
{0.0032} {0.0006} {0.0112} {0.0052} {0.0027} {0.0012} {0.0089} {0.0074}

φ1 0.6855 0.3846 0.4106 0.2144 0.6868 0.3901 0.4081 0.2244
(0.0725) (0.0613) (0.0655) (0.0491) (0.0713) (0.0603) (0.0679) (0.0502)
{0.0145} {0.0154} {0.0106} {0.0144} {0.0132} {0.0099} {0.0081} {0.0244}

C 0.1000 0.1028 0.0854 0.0824 0.1054 0.1070 0.0875 0.0827
(0.0478) (0.0466) (0.0314) (0.0176) (0.0485) (0.0486) (0.0327) (0.0313)
{0.0000} {0.0028} {0.0146} {0.0052} {0.0054} {0.0070} {0.0125} {0.0173}

α 0.7652 0.7607 0.6167 0.6200 0.7638 0.7601 0.6236 0.6299
(0.0952) (0.0967) (0.0867) (0.0886) (0.0947) (0.0964) (0.0864) (0.0878)
{0.0348} {0.0393} {0.0167} {0.0200} {0.0362} {0.0399} {0.0236} {0.0299}

β 0.1018 0.0988 0.0965 0.0974 0.0992 0.0987 0.0932 0.0974
(0.0173) (0.0174) (0.0168) (0.0170) (0.0171) (0.0172) (0.0164) (0.0171)
{0.0018} {0.0012} {0.0035} {0.0026} {0.0008} {0.0013} {0.0068} {0.0026}

θ1 0.2978 0.2516 0.2955 0.2607
(0.1412) (0.1546) (0.1419) (0.1552)
{0.1022} {0.1484} {0.1045} {0.1393}

θ2 0.0828 0.0822 0.0893 0.0894
(0.0113) (0.0195) (0.0116) (0.0129)
{0.0172} {0.0178} {0.0107} {0.0106}

ρ 0.5254 0.4338 0.5286 0.4138
(0.0320) (0.0423) (0.0303) (0.0208)
{0.0254} {0.0338} {0.0286} {0.0138}

l -.0636 0.1364
(0.1895) (0.1849)
{0.0636} {0.0636}

Q∗(θ) 0.0398 0.0376

Standard deviations and bias of the estimates are included in the parentheses and the braces.
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Table 4: Estimation result from 500 simulated series with series length 2000
model 1 model 2

regime first second first second

variable 1 2 1 2 1 2 1 2

φ0 0.1004 0.0994 0.0922 0.0954 0.1006 0.1020 0.0932 0.0936
(0.0427) (0.0248) (0.0387) (0.0221) (0.0451) (0.0253) (0.0384) (0.0227)
{0.0004} {0.0006} {0.0078} {0.0046} {0.0006} {0.0020} {0.0068} {0.0064}

φ1 0.6937 0.3850 0.4080 0.2113 0.6943 0.3938 0.4067 0.2201
(0.0502) (0.0436) (0.0500) (0.0375) (0.0509) (0.0418) (0.0490) (0.0417)
{0.0063} {0.0150} {0.0080} {0.0113} {0.0057} {0.0062} {0.0067} {0.0201}

C 0.0927 0.0962 0.0861 0.0853 0.0989 0.1032 0.0885 0.0851
(0.0375) (0.0379) (0.0234) (0.0249) (0.0377) (0.0392) (0.0243) (0.0253)
{0.0073} {0.0038} {0.0139} {0.0147} {0.0011} {0.0021} {0.0115} {0.0149}

α 0.7775 0.7728 0.6118 0.6100 0.7743 0.7691 0.6136 0.6221
(0.0738) (0.0777) (0.0693) (0.0733) (0.0738) (0.0774) (0.0705) (0.0726)
{0.0225} {0.0272} {0.0118} {0.0100} {0.0257} {0.0309} {0.0136} {0.0221}

β 0.1017 0.0999 0.0969 0.0985 0.1006 0.1000 0.0936 0.0984
(0.0168) (0.0164) (0.0155) (0.0157) (0.0170) (0.0163) (0.0152) (0.0157)
{0.0017} {0.0001} {0.0031} {0.0015} {0.0006} {0.0000} {0.0064} {0.0016}

θ1 0.3046 0.2617 0.3028 0.2652
(0.1413) (0.1477) (0.1355) (0.1492)
{0.0954} {0.1383} {0.0972} {0.1348}

θ2 0.0897 0.0894 0.0910 0.0914
(0.0245) (0.0138) (0.0160) (0.0138)
{0.0103} {0.0106} {0.0090} {0.0086}

ρ 0.5190 0.4169 0.5217 0.4101
(0.0243) (0.0191) (0.0230) (0.0175)
{0.0190} {0.0169} {0.0217} {0.0101}

l -.0287 0.1687
(0.1852) (0.1795)
{0.0287} {0.0313}

Q∗(θ) 0.0316 0.0317

Standard deviations and bias of the estimates are included in the parentheses and the braces.
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Table 5: Forex market data, Japanese Yen vs Deutsche Mark (TVCC(1;1;1;2))
Estimation Diagnostic Nonlinearity

regime first second first second test

variable J D J D k [R̂
(1)
k ]2 [R̂

(2)
k ]2 d R(d)

φ0 0.0400 0.0149 -.0013 0.0067 1 4.24 × 10−3 2.75 × 10−5 1 292.71
(0.0308) (0.0132) (0.0024) (0.0022)

φ1 0.0518 0.0570 0.0388 0.0235 2 3.86 × 10−3 2.57 × 10−3 2 288.75
(0.0474) (0.0341) (0.0041) (0.0111)

C 0.0325 0.0140 0.0001 0.0102 3 4.31 × 10−3 2.57 × 10−4 3 229.35
(0.0173) (0.0042) (0.0238) (0.0091)

α 0.9083 0.9627 0.9227 0.8838 4 5.08 × 10−4 1.83 × 10−4 4 249.04
(0.0316) (0.1069) (0.0637) (0.0386)

β 0.0409 0.0363 0.0700 0.0737 5 8.54 × 10−5 2.74 × 10−5

(0.0124) (0.0109) (0.0107) (0.0351)
θ1 0.9680 0.9866 6 5.94 × 10−4 5.89 × 10−4

(0.0106) (0.0220)
θ2 0.0258 0.0001

(0.0073) (0.0197)
ρ 0.4676 0.5948

(0.0253) (0.1368)
l -0.0789

LLF −1.77 × 103 −1.93 × 103

Standard errors of estimated are included in the parentheses.
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