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We study the Ruderman-Kittel-Kasuya-Yoshida interaction mediated by helical edge states in quantum spin
Hall system. The helical edge states induce an in-plane noncollinear exchange coupling between two local
spins, in contrast to the isotropic coupling induced in normal metal. The angle between the two local spins in
the ground state depends on the Fermi level. This property may be used to control the angle of spins by tuning
the electric gate.
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I. INTRODUCTION

Recently, the study of quantum spin Hall �QSH� state has
attracted much attentions1–5 for its interesting topology and
for its potential applications in the field of spintronics.

The well-known examples of the topologically nontrivial
states are the integer and fractional quantum Hall states,
where the quantization of the Hall conductance is protected
by a topological invariant. The QSH insulator is a topologi-
cally insulating phase with time-reversal symmetry. A two-
dimensional QSH insulator has a charge excitation gap in the
bulk and gapless helical edge states. Two states with opposite
spin polarization counterpropagate at a given edge.1,4 Due to
the time-reversal symmetry, these spin-filtered edge states
are stable against weak interaction and disorder.4,6 Hence,
they can be viewed as effective spin and charge conducting
channels and be used to construct promising spintronic de-
vices with low power consumption.

Ruderman-Kittel-Kasuya-Yoshida �RKKY� interaction is
an effective interaction between two local spins mediated by
conduction electrons.7 It plays an important role in many
fields of solid-state physics, e.g., giant magnetoresistance8

and dilute magnetic semiconductor.9 More recently, people
propose that the controllable RKKY interaction can be used
to manipulate the quantum states of the local spins, which is
a crucial point for the spintronics and quantum
computing.10,11 Thereafter, the RKKY interactions in differ-
ent spintronic materials, e.g., spin-orbital system12–14 and
graphene,15–18 have been investigated carefully in order to
facilitate the further development of the spintronic devices.
Compared with the normal cases, the effective interactions
between local spins in these systems exhibit rather different
properties. The RKKY interaction in the spin-orbital system
becomes a twisted exchange coupling since it is a spin-
dependent system.12–14 The spin polarizations of the two lo-
cal spins are no longer collinear in this case. As for the
graphene, due to its special electronic band dispersion, it is
found that the RKKY interaction is ferromagnetic for local
spins within equivalent sublattices but antiferromagnetic for
opposite sublattices when the Fermi level is near the Dirac
point.15,16

Being a spintronic material, it is a quite intriguing and
practical problem that what the RKKY interaction in the

QSH insulator is. Since the helical edge states are the only
conducting channels in this system, the problem becomes
that what the exchange interaction mediated by the helical
edge states is.

In this Rapid Communication, we investigate the RKKY
interaction mediated by the helical edge states in the QSH
insulator. Our theoretical analysis is mainly based on the
simplified model of the helical edge state,2,4,5 in which the
spin of the carriers is assumed to be parallel or antiparallel
along the z axis, as shown in Fig. 1. Actually, it is proposed
that the QSH insulator could be realized in various kinds of
systems, e.g., graphene,1 quantum well,2,3 or semiconductor
materials with special strain gradient.4,5 The descriptions of
the helical edge state in different systems may be different.
However, the model we used is the simplest and most basic
one. It grasps the primary characteristic of the helical states,
i.e., the correlation between the spin polarization and propa-
gation of the carrier, and also is the exact expression of the
helical edge states in the semiconductor system with special
strain gradient. Hence, we believe that this model is a good
starting point for analyzing of the RKKY interaction medi-
ated by the helical edge state.

We find that the helical property and the linear dispersion
of the edge conducting electrons will lead to an in-plane and

FIG. 1. Schematic of the RKKY interaction between two local
spins mediated by the helical edge states in QSH insulator. The
QSH insulator is assumed to be a finite strip geometry which is
infinite along the x direction. Two local spins S1 and S2 are located
along one edge of the QSH insulator. The solid �dashed� line rep-
resents the up-spin right movers �down-spin left movers� of the
helical edge states on this edge.
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noncollinear exchange coupling between two local spins
along the edge. In the asymptotic limit, this interaction has a
simple expression. We can see that the angle between the two
spins can be controlled by adjusting the Fermi energy of the
system. When the Fermi surface is near the Dirac point, i.e.,
the Fermi energy is near zero, the effective interaction be-
comes a constant antiferromagnetic exchange coupling. Ac-
tually, due to the helicity, pure spin current can be achieved
in these edge states. Hence, this effective coupling can also
be viewed as RKKY interaction mediated by pure spin cur-
rent.

This paper is organized as follows. In Sec. II, the RKKY
interaction mediated by the helical edge states of QSH insu-
lator is derived. In Sec. III, we discuss the special properties
of this exchange interaction. Finally, a brief summary will be
given in Sec. IV.

II. MODEL AND FORMALISM

We consider the simplest model of helical edge states,
which has been successfully used in the study of the tunnel-
ing properties of the helical edge states in the QSH
insulator.4,19,20 The schematic is shown in Fig. 1. The helicity
correlates the spin polarization with the propagation. Here,
we assume that the right �left� movers �R↑��L↓� carry spin up
�down�. In the noninteracting case, the linearized Hamil-
tonian is

H0 = − vF� dx��R↑
+ i�x�R↑ − �L↓

+ i�x�L↓� , �1�

where vF is the Fermi velocity.
The localized spins are magnetic impurities and are de-

noted by S1 and S2. Normally, the Kondo coupling between
the local moments and conducting electrons are

H1 = −
J

2 �
i=1,2

�,�=↑,↓

���Si� dx��
+�x���x − xi����x� , �2�

where J is the coupling constant, ��� is the spin operator of
the conducting electrons. � and � are the spin indices.
i=1,2 is the index of the local spins since in order to study
the RKKY interaction, we need to consider two local spins.
For the helical edge states, the only difference is that the spin
polarization is correlated with the propagation. Hence, in the
Kondo coupling expression of the helical edge states,
�↑�x���↓�x�� means �R↑�x���L↓�x��.4,21

If the coupling J is small, H1 can be treated as a pertur-
bation on H0.22 The RKKY interaction between two local
spins S1 and S2 can be calculated from the second-order per-
turbation theory12,14,23

ERK = −
J2

�
Im�

−�

EF

d	


Tr��S1 · ��Gr�R12;	��S2 · ��Gr�− R12;	�� , �3�

where EF is the Fermi energy, R12=x1−x2 is the distance
between the two local spins, and Tr means the trace over the
spin degree of freedom of conduction electrons. Therefore,

the study of RKKY interaction has been reduced to the cal-
culation of the retarded Green’s function of the helical edge
states.

The definition of retarded Green’s function is

G��
r �xt,x�t�� = − i��t − t�������xt�,��

+�x�t��	
 �4�

where � ,�= �R↑ ,L↓	 are the helical spin indices. Because
that there is no coupling between different spins in the non-
interacting Hamiltonian �1�, the nonzero Green’s functions
are GR↑R↑

r �x ,x�� and GL↓L↓
r �x ,x��. Take GR↑R↑

r �x ,x��, for ex-
ample,

GR↑R↑
r �x,x�;	� =� dtei	tGR↑R↑

r �xt,x�t��

=
1

2�
� dk

eik�x−x��

	 − vFk + i�
C
��k�� , �5�

where 
 is the cutoff of the momentum and C
��k�� is the
cutting-off function. Since our model is a low-energy ap-
proximation, a cutoff of the momentum is necessary and,
according to the discussion in the study of graphene,16 a
sharp cutoff is not suitable here. Therefore, we use a smooth
cutting function

C
��k�� = e−�k�/
. �6�

With this cutting-off function, we get

GR↑R↑
r �x,x�;	� = −

i

vF
e−�	�/vF
 · ei�	/vF��x−x����x − x�� , �7�

where ��x−x�� is a step function. The retarded Green’s func-
tion of the left movers is

GL↓L↓
r �x,x�;	� =

i

vF
e−�	�/vF
ei�	/vF��x�−x���x� − x� . �8�

Here, e−�	�/vF
 is the decay factor of the retarded Green’s
function. We have to emphasize that the Green’s functions
with different smooth cutting functions will have similar
form. The only difference is the decay factor.

Then substituting the Green’s functions into Eq. �3�, we
will get the final expression of the exchange interaction be-
tween two local spins. In the calculation, we set
R12=x1−x2�0, and then

ERK = −
J2

�
Im�

−�

EF

d	


��S1 · ��↓↑GR↑R↑
r �R12��S2 · ��↑↓GL↓L↓

r �− R12��

= −
J2

�
Im�

−�

EF

d	



F2�R12� = −
J2

�
Im�i�

−�

EF

d	GR↑R↑
r �R12�GL↓L↓

r �− R12�
 ,

�11�

and that for term of S1xS2y is

F3�R12� = − F2�R12� . �12�

Hence, we only need to consider the range functions F1�R12�
and F2�R12�.

We see that all the range functions are related to the ker-
nel function

K�R� = �
−�

EF

d	GR↑R↑
r �R�GL↓L↓

r �− R� . �13�

It depends on the Fermi energy

K�R�

=�
exp�2EF

vF
� 1



+ iR�


2vF� 1



+ iR� , EF � 0

1

2vF�
2




1


2 + R2

−

exp�−
2EF

vF
� 1



− iR�


1



− iR � , EF � 0.�

�14�

Finally, for cases EF�0, we get the range functions

F1�R� = −
J2e2EF/vF


2�vF� 1


2 + R2��
sin�2EFR

vF
�



− R cos�2EFR

vF
�� ,

�15�

F2�R� = −
J2e2EF/vF


2�vF� 1


2 + R2��
cos�2EFR

vF
�



+ R sin�2EFR

vF
�� ,

�16�

and for cases EF�0,

F1�R� = −
J2e2�−EF�/vF


2�v f� 1


2 + R2�


� sin�2�− EF�R
vF






− R cos�2�− EF�R
vF


� ,

�17�

F2�R� = −
J2

2�vF� 1


2 + R2�


� 2



− e−2EF/vF
�cos�2EFR

vF
�



− R sin�2EFR

vF
��� .

�18�

III. DISCUSSION

In the continuum limit 
�x−x��=�, we will get a rather
simple expression

ERK =
J2

2�vF�R�
�cos ��S1xS2x + S1yS2y�

− sin ��S1yS2x − S1xS2y�� , �19�

where R=x−x� is the distance between the two local spins
and �=

2�R�EF

vF
.

If we consider the two local spins S1 and S2 as classical
spins, Eq. �19� can be transformed into

ERK =
J2M2

2�vF�R�
sin �1 sin �2 cos���1 − �2� + �� . �20�

Here, �M ,�1 ,�1� and �M ,�2 ,�2� are the spherical coordi-
nates of the spin vectors S1 and S2. We can see that only if
�1=�2=� /2 and cos���1−�2�+��=−1, the system will have
its lowest energy. In this case, �1=�2=� /2 means that S1 and
S2 are in plane, and cos���1−�2�+��=−1 shows that the
exchange interaction is noncollinear. It means that the effec-
tive exchange interaction mediated by the helical edge states
is an in-plane and noncollinear coupling. Actually, it is easy
to see from the expressions that in plane and noncollinear are
the general characteristics of the helical edge states mediated
exchange interaction, which does not depend on the con-
tinuum limit.

In the continuum limit, the angle between the local spins
is determined by �=

2�R�EF

vF
, i.e., the Fermi energy EF and the

distance R. Especially when the Fermi energy EF=0, i.e., the
Fermi level is around the Dirac point �=0 and �1−�2=�. It
means that the exchange coupling becomes a constant and is
always antiferromagnetic. Here, the Dirac point is the cross-
ing of the bands of right and left movers. However, in gen-
eral cases, we do not have a simple formula about the angle
between the local spins. It should be determined though con-
crete numerical calculation.

The special characteristics of the helical edge states me-
diated exchange interaction result from the interplay between
the helicity and the linear band dispersion. As shown in
former studies, without helicity, if the system is spin inde-
pendent, the coupling will have similar form F�R�S1S2 and
the only difference is just the range function F�R�. In our
case, the helicity makes the system spin dependent: though
the matrix of Green’s function is still diagonal but
GR↑R↑

r �x ,x� ;	��GL↓L↓
r �x ,x� ;	�. It is the main reason of the
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noncollinear behavior of the exchange coupling. In addition
to the helicity, the linear band dispersion induces opposite
step functions into the Green’s functions, as shown in Eqs.
�7� and �8�. Actually, the in-plane characteristic of the ex-
change interaction mainly results from these step functions.

IV. CONCLUSION

In summary, based on the simplified model of the helical
edge states, we have investigated the helical edge states that
mediate RKKY interaction between local spins in the QSH
system. Since the conducting electrons in the helical edge
states are the only carriers in the QSH insulator, this ex-
change interaction is probably the only possible mechanism
of the exchange coupling between local spins in such a
promising spintronic system. Furthermore, due to the helic-
ity, i.e., the correlation between the spin polarization and
propagation, it is believed that pure spin current can be real-
ized in this edge state. It means that this exchange interaction
is actually an exchange interaction mediated by pure spin
current. Hence, this problem is not only of fundamental in-
terest but also useful for the future development of spin-
based devices in such systems.

We analyze the simplest theoretical model of the helical
edge states and concentrate on the effects of the helicity and
its linear band dispersion. We find that the RKKY interaction
mediated by this helical edge state in such a system is in
plane and noncollinear, which is extremely different from the
exchange interaction in other systems. The angle between the
local spins depends on the Fermi energy of the system.

Therefore, this effective interaction offers a possible way to
control such angle through adjusting the Fermi level by a
gate. In the continuum limit, a simple expression of this ex-
change interaction can be achieved. Especially, when the
Fermi level is around the Dirac point, the exchange coupling
becomes a constant antiferromagnetic one. We also point out
that these peculiar properties result from the interplay be-
tween the helicity and the linear band dispersion.

However, our study is based on the noninteracting low-
energy approximation model of the helical edge states. The
assumption that the spins of the helical edge modes are
pointing along z direction is a good approximation for the
Kane-Mele model1 �graphene� and the strained
semiconductor.5 The BHZ model2 �HgTe/CdTe quantum
well� is more complex and more practical factors should be
included. As far as we know, the spin orientation of the he-
lical edge modes is still unknown. A more realistic and com-
plicated theoretical model has to be used in order to investi-
gate the RKKY interaction in such system. It is just the
project we are working on. Our analysis in this work is ac-
tually a good starting point for further investigation.

Finally, we propose that the magnetic impurities deposited
on the QSH thin film24 is an ideal system to experimentally
investigate the helical edge state mediated RKKY interaction
with scanning tunneling microscopy.
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