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ABSTRACT:  In a specific region, monthly (or bimonthly) rainfall data can be considered as 

deterministic while daily rainfall data are almost completely random.  As a result, deterministic 

models cannot fit the daily data because of the strong stochastic nature while stochastic models 

cannot fit into daily rainfall time series because of the deterministic nature in the large scale.  

Although there are different approaches for simulating daily rainfall, mixing of deterministic 

and stochastic models has not hitherto been proposed.  An attempt is made in this study to 

simulate daily rainfall data by utilizing a discrete wavelet transformation (DWT) and Hidden 

Markov model (HMM).  We use a deterministic model to obtain large-scale data, and a 

stochastic model to simulate the wavelet tree coefficients.  The simulated daily rainfall is 

obtained by inverse transformation.  We then compare the accumulation of simulated and 

observed data from the Chao Phraya Basin in Thailand.  Because of the stochastic nature in the 

small scale, the simulated daily rainfall would on a point to point comparison show deviations 

with the observed data. However the accumulations of simulated data do show some level of 

agreement with the observed data. 
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INTRODUCTION 
 
Rainfall data constitute one of the most important time series in hydrology.  There are two 

approaches of simulating rainfall time series, namely deterministic and stochastic.  Because of 

the strong stochastic nature of daily rainfall, stochastic methods are more widely used in 

hydrology than deterministic methods.  Salas (1993), Wilks (1998), and Sharma and Lall (1999) 

have suggested different approaches of simulating daily rainfall data (see also a review of daily 

rainfall models for Australia by Chapman (1994)).  However, because of the strong 

deterministic character of the large-scale rainfall data and the strong stochastic character of the 

small-scale data, such models cannot produce successful simulations.  In this paper, we 

introduce a combination of deterministic and stochastic models, and try to simulate rainfall 

data of such characteristics. 

 

In the proposed approach, a signal (daily rainfall in this case) is decomposed into sub-signals 

with different scales, i.e., a large-scale signal and several small-scale signals.  The approach is 

an alternative to the frequency domain analysis of a signal via Fourier transforms by which the 

frequency content of the signal is obtained.   The Discrete Wavelet Transform (DWT) approach 

proposed in the study is capable of not only providing the frequency content in the signal but 

also the times of occurrences of each frequency component thereby giving a multiple 

resolution of the signal.  The approach also has the added advantage of not requiring the 

assumptions of stationarity and periodicity of the time series.   Related studies on multi-scale 

analysis in hydrology have been carried out to characterize daily stream flow (Smith et al., 

1998), monthly reservoir inflows (Coulibaly et al., 2000), and to generate streamflow data 

(Bayazit and Aksoy, 2001). The DWT approach has also been used to generate rainfall data 

(Unal et al., 2004).  Such studies however have not addressed the issue of the mixed-scale 

composition (large and small) of daily rainfall data. 

 

In this study, the low frequency component of the rainfall series is considered to emanate from 

a deterministic system and therefore is represented by a deterministic model.  Several types of 

deterministic models are available in the literature, but a local linear model is adopted in this 

study.  The high frequency component of the series which is considered to emanate from a 

stochastic system is analyzed using stochastic and statistical methods.  The methods developed 

and applied include the Independent Mixture Model (Chipman, 1997; Wong and Li, 2000), the 

Hidden Markov Chain Model (Rabiner, 1989; Aksoy and Bayazit, 2000), and the Hidden 
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Markov Tree Model (Rabiner, 1989).  The high frequency wavelet signal which is considered 

as a random variable is assumed to follow a mixture model that consists of the weighted 

combination of several Gaussian distributions, whose weights themselves are stochastic and 

are functions of a pre-assigned number of hidden states, and, state and transition probabilities.  

The state probabilities are treated as Markov processes.  By assuming that the transition 

probabilities are the same for the same period of time in different years, the EM algorithm 

(Crouse et al., 1998; McLachlan, 1997; Ronen et al., 1995; Dempster et al., 1997) is applied to 

estimate the state and transition probabilities (Rabiner, 1989) for the Markov model.  Once the 

state probabilities are estimated, the wavelet coefficients are simulated by Monte Carlo method.  

After the decomposition, and together with the low-frequency component, the daily rainfall 

data can be simulated via inverse transformation.    

 

The approach is then applied to simulate three daily rainfall time series from the Chao Phraya 

Basin (CPB) in Thailand.  The first data series is from the gauging station No.111 (CPB111) 

for the period April 1, 1980 to March 31, 1994, the second from the gauging station No.112 

(CPB112) for the period April 1, 1980 to July 31, 1994, and the third from the gauging station 

No.117 (CPB117) for the period April 1, 1980 to July 31, 1994.  The statistics of the three data 

sets are given in Table 1. 

 

The flow of the paper is as follows:  Since several mathematical/statistical tools, some not so 

familiar in the hydrological context, have been used in the study, a brief account of them is first 

presented.  Attempts will be made to explain these ideas and techniques briefly and provide 

references for detailed analysis and explanations.   It is followed by a section on discussing a 

tree model used in the paper.  As there are many parameters (e.g. state and transition 

probabilities, number of states (M) and number of scales (N)) in the model, their methods of 

estimation will then be given.  When the model is well established, it is examined and applied 

to simulate rainfall data for 3 gauging stations.  Finally, a brief analysis of the simulated data 

and the limitations of the approach will be given. 
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SOME PRELIMINARIES 
 

In this section, a brief introduction to wavelet decomposition, discrete wavelet transformation, 

hidden Markov tree model, and Monte Carlo method will be given.  It is by no means complete.  

A more rigorous treatise can be found in standard textbooks (e.g. Daubechies (1992) and 

Sobol’ (1994)). 

 

2.1 Introduction to wavelet decomposition 

Wavelet decomposition, or wavelet transform, is a relatively new technique of signal 

processing whereby a time series can be viewed in multiple resolutions with each resolution 

reflecting a different frequency.  It has several advantages over the traditional method of 

frequency domain analysis by Fourier transforms.  For example, wavelet decomposition can 

handle situations where the signal has sharp peaks or discontinuities, which the Fourier 

transform approach cannot.  It is also capable of giving the time and frequency information 

simultaneously (subject to the limitations imposed by the Heisenberg Uncertainty Principle), 

i.e. the time-frequency representation of the signal, whereas the Fourier transform approach 

can give only the frequency information.  The times of occurrences of the frequencies remain 

unknown.  Fourier transform approach can be used in situations where the times of occurrences 

of various frequency components are not of interest but only interested in what frequency 

components exist.   The Short Time Fourier Transform (STFT) or, Windowed Fourier 

Transform, which is a variant of the normal Fourier transform, and which is capable of giving 

the times of occurrences of a band of frequencies rather than the exact frequency, can be 

considered as an improved version which still has problems.  Wavelets, which can be thought 

of as a spinoff from STFT overcome many such problems.  Unlike in Fourier analysis, the 

wavelet analysis does not require assumptions about stationarity and periodicity of data.    

 

The basic approach in Fourier as well as wavelet decomposition is to convolute the signal 

function by a basis function.  In the case of Fourier approach the basis function is a 

combination of Sines and Cosines.  In the case of wavelet approach, there exist a number of 

different basis functions such as for example, the Harr (Harr, 1910) wavelet, the Daubechies 

(Daubechies, 1992) wavelet, the Mexican Hat (normalised second derivative of a Gaussian 

function) wavelet among others.  Of these, the Harr wavelet has the major advantages of been 

conceptually simple, computationally fast and exactly reversible.  Among the many popular 

uses of the Harr wavelet is its application in the JPEG format of digital image compression.   
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Each step of a wavelet transformation produces a set of averages and a set of differences 

thereby halving the size of the input data.  With an input data size of 2N (almost all wavelet 

algorithms work with data expressed as a power of two) recursive repetition of this process 

leaves with one (20) sum and 2N -1 differences.   The differences are referred to as wavelet 

coefficients.  

 

2.2 Discrete Wavelet Transformation 

For a given signal with  samples, , in which the subscript 0 refers to the 

finest scale, i.e. 0-order (also known as 0-scale), the following two equations can be introduced 

on the assumption that these numbers are not random and have some correlation structure (for 

): 
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It should be noted that the decomposition according to Eqs. (1) and (2) is slightly different from 

that given for Haar Wavelet base (Mallet, 1997; Daubechies, 1992).  The proposed 

decomposition confines the wavelet data to the interval )1,1(− , thus making it easier for 

stochastic simulation.  In the Harr wavelet, the wavelet coefficients are taken as half the 

differences of a pair of consecutive data values, and the averages or the smoothed value as half 

the sum.  The second term in the denominator of Eq. 2 is introduced to avoid division by zero.   

 

The 0-order data is now transformed into 1-order data which carries some information of the 

original signal: 

},,,,,,,{ 11 2,12,11,12,12,11,1 −− NN DDDCCC KK . 

It should be noted that, the 1-order data can be inversely transformed back to 0-order data, as 

follows: 
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Next, we keep  fixed and process the  data points },,,{ 12,12,11,1 −NDDD K 12 −N
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},,,{ 12,12,11,1 −NCCC K  by using the more general formulae (for Nk ≤≤1 , , where k 

can be considered as the scale level in the wavelet tree (Section 1), while n can be considered as 

the position of nodes: 

kNn −≤≤ 21

 
2

12,12,1
,

−= nk
nk

C
C −−+ nkC

,       (5) 

 
12

2,1
,

,

12,1

+
−

= − nk
nk C

C
D

,{ 1, DCN

},,,{ 2,02,01,0 NCCC K

,{ ,1 nC

1+k {C

nkD ,

−−

nk

nkC
,       (6) 

that yield the 2-order data 
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By transforming the data successively, the N-order data can be obtained as: 

}, 12,1 −ND

1,NC

,,,,,,,, 2,1,2,11,11, −−− kNDDDD kkNNN KKK . 

 

From another point of view, if the information  and all  are known, the original values 

 can be recovered via inverse transformation.  Here,  is the large-scale 

(coarsest scale) data, while  are known as wavelet coefficients.  Although the above 

analysis is for signals with 2  samples, signals that have lengths different from a power of 2 

can also be transformed into signals of length  by adding zeros to one or both ends. 

1,NC
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D
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N

 

This decomposition is originated from the input signal , which is first transformed into 

scale ‘1’ data .  Then each scale ‘k’ data {  is further transformed into 

scale ‘ ’ data , until the largest scale (N in this case) is reached.  Without 

ambiguity, it should be noted that the scale ‘k’ in  is ranging from 0 to N, while the scale 

‘k’ in  is ranging from 1 to N. 

nC ,0

,,nkC},1 nD

,,1 nk+ },1 nkD +

nkC ,

 

2.3 Monte Carlo Method 

The central theme of Monte Carlo method is to simulate an arbitrary continuous random 

variable by a random variable γ  which is uniformly distributed on . Suppose we are 

given a continuous random variable 

]1,0[

ξ  with probability density function , then the 

probability distribution function of 

)(xf

ξ  is defined as 
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As x  increases from ∞−  to ,  is monotonically increasing from 0 to 1.  The idea of 

Monte Carlo method is first determining 

∞+ )(xF

γ  from a uniform distribution on , then using it 

to obtain the value 

]1,0[

ξ  by the equation 

 ) .       (8) ()( ξγ
ξ

Fdttf == ∫ ∞−

Next, consider a more general example.  Suppose we have a mixture of densities, 

         (9) ∑
=

=
M

i
ii xpcxp

1

)()(

where each  is itself a density function,  and )(xpi 0>ic 1
1

=∑ =

M

i ic

)(x

, then we have 

 where each  is the distribution of .  To simulate a random 

variable 
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ξ  with mixture of densities , we introduce another discrete random variable )(xp κ , 

so that ici =)=κPr(

1

  and define a two-stage modelling scheme:  select 2 random 

numbers 

),,1( Mi K=

γ  and 2γ  from , then ]1,0[

1) use 1γ  to define a random value i=κ  and 

2) use 2γ  to define ξ . 

Explicitly, )(2 ξγ iP=  if ii cccc ++≤≤++ − LL 1111 γ  (here 11 −++ icc L  is defined to be 0 

when ).  The distribution function of 1=i ξ  defined in this way is exactly . )(xP

 

2. 4 False Nearest Neighbourhood (FNN) method for test of determinism 

For a dynamical system )1())(()( +=→ ttFt xxx

)(ty

, it is possible to define a new 

-dimensional Euclidean space of vectors , in which the evolution in time 

 follows that of the unknown dynamics 

ed

(ty )1() +→ ty )1()( +→ tt xx . 

 

If )])1((,),(),([)( TdtxTtxtxt e −++= Ky  represents a vector point at time level t  in a 

(time-delay) reconstructed phase space of dimension  and time delay ed T , then there must 

exist another point , defined as )(sz

 )])1((,),(),([)( TdsxTsxsxs e −++= Kz      (29) 

at time level , that satisfies ts ≠
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 )()()()( tuts ywyz −≤− ,      (30) 

 

for every point  (defined in similar fashion as , and )(uw )(ty tu ≠ ) in the same reconstructed 

phase space.  Here, |||| ⋅  is the usual Euclidean norm.  In other words,  is the nearest point 

in the Euclidean space to .  Then  is called the nearest neighbour of  and can be 

written as . 

)(sz

)(ty )(sz )(ty

)(tNNy

 

Such a neighbour  is called a true neighbour, if it has come to its neighbourhood 

through dynamical origins, and is called a false nearest neighbour (FNN) of  if it arrives in 

its neighbourhood by projection from a higher dimension.  To check whether a nearest 

neighbour is true or false, we compare the distance between the points  and  in 

dimension  with those in higher dimension 
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.  This is checked using the approximate 

condition that if  is the nearest neighbour of , and if )(tNNy )(t
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then  is a FNN of  (Abarbanel, 1996).  If for a certain , the percentage of FNN’s 

is less than 5%, then d  is accepted as the embedding dimension.  It is expected that the 

percentage of FNN’s drops from nearly 100 in dimension 1, to zero when the true parameter 

value (in this case, value of ) is reached. 

)(tNNy )(ty

e

N

ed

 

3.  TREE MODEL FOR DAILY RAINFALL SERIES 
For a series of given daily rainfall data  )ir 1( maxNi ≤≤ ;  is the length of the rainfall time 

series, a new time series , which gives the mean rainfalls for every  days can be 

constructed as 

maxN

nu N2
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=
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N

n

i
inNn ru

2

1
2)1(2

1 ,       (10) 

where  is the given scale (assigned to be 6 in this study, and will be explained in Section 5).  

The new time series  can be considered as deterministic and therefore predictable for 

sufficiently large scale  (in this study, 

N

nu

N 6=N  means that we are considering the means of 64 
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days).  To estimate the daily rainfall using the predicted value  of the mean rainfall in a 

day period, a reasonable thought is to estimate the mean rainfalls  and  at the 

 scale level, , ,  and  at the 

1,NC
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N2  

1,1−NC 2,1−NC

1−N 1,2−NC 2,2−NC 3,2−NC 4,2−NC −N

N

 scale level etc. successively, 

until the daily scale level , , …,  is reached.  However, to obtain the mean rainfall 

at the  scale level, using the predicted rainfall at the  scale level, more information is 

needed.  Since C , and  &  respectively are the mean rainfalls at  and 
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To estimate the  scale mean rainfall, another variable is introduced: 
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Then, the  scale mean rainfall can be estimated by known  and  as − 1,NC ND 1,
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Eqs. (11) and (12), in general are  

2
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for all the scales ≤≤

nkD ,

1 .  Then  and  can be obtained for all , 1 . 

The estimation of daily rainfall data,  for all , can then be obtained by sequential 

application of this procedure.  Therefore, the remaining task is to find the large-scale signal 

 and the wavelet coefficients .  In the above notation,  is the k-order “scale” signal 

at position , and  is the k-order “wavelet” signal at position  in the  layer (Figure 1).  

In this study, 0-order scale data correspond to daily rainfall data ( ), 1-order correspond to 

2-day data ( ), 2-order correspond to 4-day data ( ), 3-order correspond to 8-day data ( ), 

etc., and N-order data correspond to -day data.  For example, 
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For simplicity, the above descriptions are restricted to a single signal.  However, several signals 

from a given historical data set will be used to model the large-scale prediction ( ) and 

wavelet tree simulations ( ).  Therefore, the above concept is applied with several signals, 

by adding a superscript y to denote the data in year y as follows:   

1,NC
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Throughout this paper, the notations (for example,  and ) without superscript y are 

refer to the data that are to be estimated, whereas the those (for example,  and ) with a 

superscript y refer to the historical data that have been used in the simulation process. 

nkC , nkD ,

y
nkC ,

y
nkD ,

 

 

By using the above decomposition method the (observed) 0-order scale data  can be 

decomposed as follows: 

nC ,0

 
nC ,0  nC ,1 nC ,2 nNC ,1− nNC ,

nD ,1 nD ,2 nND ,1− nND ,
 

Conversely, the (simulated) 0-order scale data can be reconstructed by the wavelet signal and 

the large-scale signal as: 
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nC ,0  nC ,1 nC ,2 nNC ,1− nNC ,

nD ,1 nD ,2 nND ,1− nND ,
 

Since the large-scale signal of a daily rainfall data is assumed to be deterministic, the N-order 

scale data  can be predicted using the historical data for large .  In this study, a local 

linear model is used for this purpose and a tree model is used to simulate the wavelet signal 

, ( , . 

1,NC

Nk ≤

N

nkD , ≤1 kNn −≤≤ 21 )

 

In the “wavelet tree” (Figure 2), the node  where k  is the layer number and n  is the 

position number in layer k  has the parent 

),( nk

( ])2/)1[(,1 ++ nk

[x

 while the offsprings are 

 and .  Here the function  returns the largest integer smaller than )12,1( −− nk )2,1( nk − ] x  

(the parent-child terminology is used in related papers, e.g. Ronen et al. (1995) and Crouse et 

al. (1998)). 

 

The data in the wavelet tree are all stochastic, and therefore a stochastic method must be used 

for simulation.  A simple probability function such as the Gaussian distribution will not be 

suitable because the data in the wavelet tree which are built by the daily rainfall data, will 

contain many small values (See Table 1 which gives the dry probability, an indicator of the 

number of days with zero rainfall), and some large values.  In this study, a mixture model, a 

combination of several Gaussian distribution functions, is used to simulate the wavelet signal: 

 ∑
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where  is the probability distribution of the wavelet signal .  The weighted value for 

each Gaussian distribution function, , is also stochastic.  It is simulated by using a new 

random variable , called the hidden state variable, which has values of .  

The weighted value  is equal to the probability of hidden state variable in state i  (i.e. 

).  In the above definitions, i  is the number of hidden states assumed 

, 

)(xp

Pr(S=

,3,2 K

nkD ,

)(, iv nk

nkS ,

v

)i=

)

},,3,2,1{ MK

)(, ink

)( ,, iv nknk

,,1( Mi = M  is the maximum number of hidden states, and  is the variance of the 

Gaussian distribution. 

2
iσ

 

It can also be seen that the weighted values for the mixture model for the data points  and nkD ,
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 or  are dependent.  A large value of  always means that one value of either 

 or  is large.  So the weighted value , (or, ) for the data point 

 (or, ) which is equal to the probability of the hidden state variable  (or, 

) depends on the weighted value , the probability of the hidden state variable  

equal to i.   Since probability of transition of the hidden state variable from  to  

( ) could vary with position , we introduce the transition probabilities as follows: 
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In order to simulate the daily rainfall data by the above approach, we need to know the 

following parameters:  the N-order scale data C ; the number of hidden states M ; the 

variance for each hidden state ; the weighted value  for each Gaussian distribution, 

i.e. the probability of the hidden state random variable 

2
iσ )(1, iN

N

v

S i=1,  and the transition probabilities 

.  All the remaining  can then be obtained by Eq. (17) and the estimated .  

In this study, we fix the number of the hidden states 

),(, jiT nk )(, inkv )(i1,vN

M  and their variances , , a 

priori, and focus on discussing the other parameters. 

2
iσ

−

Mi ≤≤1

N2

1

,N

 

SIMULATION PROCEDURE 
 

The tree model and the hidden Markov model can now be used to simulate the daily rainfall 

data.  For a given prediction origin , the mean rainfall value for  days 

 is estimated and denoted as .  Since the mean rainfall data C  

of  days period  is known, the mean rainfall  (in  scale level) 

and  (in N scale level) can be obtained by Eqs. (11) and (12).  The weighted value v  

is obtained by the method described in APPENDIX A.  Together with the transition 

probabilities  estimated by the EM algorithm using the previous years’ daily rainfall 

data, all the hidden state probabilities can be obtained (APPENDIX B).  Using the hidden state 

probabilities, the remaining values D  (other than ) are simulated by the Monte Carlo 
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method. 

 

4.1 N-order scale data 

The N-order scale data  can be estimated by using the historical daily rainfall data.  For a 

given prediction origin , we identify the date corresponding to  in the  year as  . For 

example, if , we set  and , then decompose the (signals of) daily 

data in the  days periods  into sub-signals (wavelet tree).  If  

and  respectively denote the mean rainfalls for the  year for the periods 

 and , then by the determinism of the 

N-order scale data, it can be assumed that u  and  satisfy an evolutionary equation of the 

form 
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where  denotes the evolutionary function. h

 

In this study the function  is assumed to be linear of the form h

 ε++= −1100 uwwu         (19) 

where the parameters  and  are estimated by the least squares method by minimizing 0w 1w
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 1100 ˆˆ −−= uwuw ,        (21) 

where ∑
=

−− =
Y

y

y
ll u

Y
u

1

1 , for . 1,0=l

 

Once the coefficients  and  are known, the mean rainfall data  for the period 

 can be estimated by 

0ŵ 1ŵ 0u

]2,12[ 1
0

1
0

−− ++− NN tt 1100 ˆˆ −+= uwwu  (here  will be the mean 1−u
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rainfall for the period ).  Since the mean rainfall for the period 

 denoted by  is known, the 

]2,123[ 1
0

1
0

−− −+×− NN tt

1,1−NC (],12[ 0
1

0 tt N +− − )1−N -order scale data  and N-order 

wavelet data  can be obtained from Eqs. (11) and (12). 

2,1−NC

1,ND

ND

 

The large-scale simulation by using this simple linear model is shown in Figure 3, and the 

statistics of the linear model simulation are listed in Table 2. 

 

4.2 Weighted value  vk,n(i)  

The weighted value v  for the node  in the wavelet tree is first estimated using the 

wavelet value .  The transition probabilities for the wavelet tree are estimated under the 

assumption that different wavelet trees by the rainfall data for the same time period in different 

years have the same transition probabilities (i.e. for any 

)(, in )1,(Nk

1,

y , 

 for )| , jSi y
nkln ==− 1,0Pr(),(2,1 jiT lnk =−− 2,1

y
− =l

},, 2,02,
yy

NCK

Sk ).  If the 0-order scale data for the  year 

( ) is , then the 

thy

Yy ≤≤1 {C ,1 0C,0
y Y  wavelet trees are constructed by using these 

0-order scale data as  for y
nkD , Nk ≤≤1 n ≤≤ 21,  and kN− Yy ≤≤1 .  All the wavelet trees 

have the same transition probabilities  but different weighted values , which 

could be estimated by the EM algorithm (APPENDIX B).  After estimating the weighted value 

, the other weighted values  are given iteratively by 

),(, jiT nk

)(, iv nk
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4.3 Wavelet value Dk,n  and daily rainfall data 

The Monte Carlo method is used to simulate the wavelet coefficients  using the weighted 

value .  For a pair of , with 

nkD ,

)(, iv nk ),( nk ,2,1 1, −= Nk  and  if K

j)( Mi ≤≤1

kN−2n = ,1 ,,2 K

 ,       (24) ∑
=

i

=
j

nk i, )(δ nkv
1

,
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then, we have 

 1)()2()1()0(0 ,,,, =≤≤≤≤= Mnknknknk δδδδ L .    (25) 

For two random numbers, 1γ  and 2γ  chosen from , the value of the wavelet coefficient 

 at node  is simulated as 
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Here,  is the error function and is defined as )erf(x

 ∫0 −=
x

dttx )exp(2)erf( 2

π
       (28) 

and  is its inverse – the inverse error function.   )erfinv(x

 

The random number  is defined as nkD ,

 ( ))12erfinv(2 2, −= m
i

m
nkD γσ , subject to )]1(),1([ ,,1 −−∈ ii nknk δδγ  , (27) 

and its expected value is defined as 
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This is equivalent to choosing two random numbers x  and y , where x  is normally distributed 

with zero mean and unit variance, and y  is uniformly distributed in the range , then  

is simulated as 

]1,0[ nkD ,

xD ink σ=, , if y )](),1[ , inkk (, in δδ −∈  (by Monte Carlo method, the formula 

)12erfinv(2 2 −γ  is indeed a simulation of standard normal distribution with zero mean and 

unit variance).   The command ERFINV in MATLAB can be used for executing Eq. 27. 

 

The daily rainfall data,  for , can then be obtained using the wavelet tree 

and the scale data  of equation (12). 

nC ,0

2,

1
00 2 −+≤< Ntnt

1−NC
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APPLICATION 
 

The proposed method is applied to three rainfall data sets from the Chao Phraya River Basin in 

Thailand.  As mentioned earlier, some parameters needed to be determined a priori.  They 

include the number of layers N  in the wavelet tree, the number of hidden states M  and the 

variances iσ  for each hidden state. 

 

The number of layers (or, the scale) in the wavelet tree, N , is determined using the False 

Nearest Neighbours (FNN) method that has been proposed for finding the embedding 

dimension  of a deterministic system (Abarbanel, 1996; Jayawardena et al., 2002).   In this 

study, we extend the same concept to determine the best scale order  which will ensure that 

the data in the N-order scale are deterministic.  In other words, the FNN method is used as a test 

for determinism of a time series.  It should be mentioned that,  is chosen to be the minimum, 

so that the data of scale less than  are considered as stochastic, and therefore the wavelet tree 

coefficients are stochastic. 

ed

N

N

N

 

In this study, we use the FNN method to detect determinism for mean rainfall for different 

scales by fixing the time delay and comparing the percentage of FNN at different embedding 

dimensions.  The time delay T  is fixed as unity and the best embedding dimension, by trial and 

error, has been found to be 3.  The analysis shows (Figure 4) that when the scale is 6, almost all 

the points in the reconstructed phase space have no False Nearest Neighbours (FNN), and 

therefore the mean rainfall series with scale 6 can be considered as a deterministic series. 

 

The second parameter to be assigned a priori is the number of hidden states which has been set 

at 3.  The third is the variances.  Since all the wavelet signals lie in the interval , their 

variances will be within the range .  Therefore, they are assigned the values 

)1,1(−

1)1,0( 1.0=σ , 

4.02 =σ , 7.03 =σ  representing large, medium and small hidden states. 

 

The simulation procedure for fixed N, M and prediction origin t0, involves four steps:  The first 

step is to estimate  - the mean of rainfall data in the interval 

 by the linear model.  We determine the mean of corresponding  days 

in the previous years, i.e. the mean  in the interval , and the mean 

01,61, uCCN ==

yu0
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yu 1−  in the interval , for ]2,123[ 16
0

16
0

−− −+×− yy tt Yy ≤≤1

,12 16 +− −

51

.  By using the linear model,  is 

simulated.  Since the rainfall data of the period [  is known,  is obtained and 

thus  is evaluated by Eq. (12).  The second step is to estimate the weighted value  for 

 using  obtained in step one and the algorithm in APPENDIX A.  The third step is 

to estimate the transition probabilities  (

0u
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]00 tt

)
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1≤ i 1,

,(, iT nk

6D

j ≤≤ k 1
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,  and ) of the 

wavelet trees constructed by the historical data of the period .  The last 

step is to simulate the wavelet coefficients  (other than ) by the Monte Carlo method.  

The daily rainfall data for the  days following the prediction origin  can then be calculated 

by inverse transformation. 

kn −≤ 62
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RESULTS 
 

The results of daily simulation of the rainfall data in the Chao Phraya Basin are shown in 

Figure 5 for different origins of prediction.  Since the model that has been used is a mixed one, 

it has inherently some randomness built into it.  Therefore a deterministic comparison alone is 

not expected to give a one to one match.  Nevertheless, the direct comparisons show some level 

of agreement as can be seen in the dry period of the simulated and observed time series. 

 

On the other hand, as illustrated in Figure 6, comparisons of the observed and simulated 

rainfall accumulation seem to give a better interpretation.  It can be seen that the accumulated 

rainfall of the simulated one is close to the observed one in between the scale from 1 to 16.  

This observation is anticipated, since the mean of  days rainfall data is of deterministic 

nature, the mean of simulated rainfall of a number of days less than 64 should be close to the 

mean of original rainfall, and because of the stochastic nature of the model the period that 

simulated mean (equivalently accumulated rainfall) equals to original one is varying. 

 

Another point to be mentioned is that the accumulation of 32 days rainfall data does not always 

give a good prediction.  This is mainly due to the error in simulating the large-scale data by the 

linear model.  A small error ε  in the large-scale simulation could result in a large error, namely 

, in the large scale.  It is also known that there are only limited successes of deterministic 

modelling of rainfall.  It seems that some other models could also be employed in this situation; 

ε×62
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however, the estimation of parameters may lead to difficulties. 

 

The results are summarized in Table 3. 
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7.  CONCLUSION 
 
A novel approach for the simulation of daily rainfall data has been presented.  The model is 

motivated by the notion that in some regions, large-scale rainfall data exhibit a deterministic 

character while small-scale data exhibit strong stochastic character.  In this study, we aimed at 

simulating the rainfall data sets with such properties, thus requiring many assumptions for 

different modelling levels.  A brief account of these assumptions is summarized in Table 4. 

 

Although the idea of the model is quite clear, the methodology is rather complex, thereby 

imposing several limitations: 

 

1) Linear model 

In the study, the FNN method is employed to find the scale in which the underlying dynamical 

system is deterministic.  We are able to explore the original system by using the simple 

transformed phase space.  However, the original dynamic is still unknown. In other words, the 

system  remains unresolved and the underlying dynamics could be 

very complicated.  There is no special theory to justify the assumption that the linear model 

used in this study could fit into the large-scale data.  However it gives an acceptable primary 

simulation (see Figure 3).  In fact, some statistical methods or some deterministic methods can 

also be used to predict the monthly rainfall accumulation.  Here we employ a simple 

deterministic model – the linear model – to do it.  For different rainfall series at different 

regions, different methods can be used for prediction purpose.  For example, we may use a 

similar 3-parameter linear model, 

)1())(()( +=→ ttFt xxx

221100 −− ++= uwuwwu , to do the simulation.  The results 

are shown in Figure 7, and summarized in Table 5.  It gives a very similar estimation as the 

2-parameter linear model in this study. 

 

Many fitting tools, for example, Fourier series and polynomial interpolation are widely used in 

the analysis of periodic time series.  However such methods are not suitable in the present case.  

For example, if we have historical rainfall data up to the date , and we need to simulate the 

daily rainfall starting from  using  the proposed model, the mean of  days data centered at 

 would be necessary;  i.e. the rainfall of the period , which include a 

prediction of  days rainfall data (for the period [ ).  When this  is small 

0t

1 +

2+

0t
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2+ N
0t ],12[ 1

00
−−− N tt

],1 1
00

−+ Ntt12 −N N
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(e.g. 1, 2), such fitting tools may be suitable, however it will give unpredictable error when  

is large (e.g. 6). 

N

 

2) Transition probabilities 

We have assumed that the rainfall data has same statistical properties in the same time region in 

different years.  This assumption is crucial for simulating the transition probabilities by EM 

algorithm (provided in APPENDIX B). 

 

3) Negative values in large-scale predictions 

Some large deviations or negative values are predicted using the 2-parameter (see Figure 3(c, 

e)) and 3-parameter (see Figure 7(a, b, c, e)) linear model.  These errors were essentially due to 

insufficient quantity of data for the estimation of parameters  (Eqs. (20), (21)).  Our 

large-scale simulation, ranging from 

iŵ

43490 =t  to 50780 =t , can only provide 12 or 13 data 

points for the least-square fitting.  Therefore, in some cases, the least square method may not 

give a precise estimation for the parameters , and thus resulted in large error and causing the 

large-scale prediction to be negative. 

iŵ
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APPENDIX A 
 
The algorithm provided below is used to estimate the parameters in a mixture of Gaussian 

distributions.  It turns out to be a special case of the EM algorithm developed by Dempster, 

Laird, and Rubin (1997).  Quick reference could also be made to the book by Hamilton (1994). 

 

Let  be an arbitrary initial guess of  under the probability rule  

(Here the superscript  is an iteration counter).  For 

)(1, ivt
N )(1, ivN 1)(

1 1, =∑ =

M

i
t
N iv

t Mi ,,2,1 K= , we let 

         (32) )()( 1,1, ivi t
NN =α

and 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 2

2
1,

1, 2
exp

2
1)(

i

N

i
N

D
i

σσπ
β .      (33) 

Then a new estimation of the probability  is obtained as )(1, ivN
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for .  The iteration stops when the convergence criterion Mi ,,2,1 K=

        (35) ε<−∑
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( 60.1 −= Eε  in this study) is satisfied.  Thus the estimation of the probability  can be 

obtained. 
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APPENDIX B 
 
The EM algorithm for estimating the transition probabilities closely follows the paper by 

Crouse et al. (1998).  The EM algorithm for dependent tree models first appeared in Chow and 

Liu (1968).  Ronen et al. (1995) expanded the work to include the condition that some 

components of the tree are unobserved.  However, the EM steps have been derived only for 

discrete-valued random variables.  Crouse et al. (1998) generalized the algorithm so that it can 

be applied to the hidden Markov tree models, which are of discrete and continuous valued 

nodes.  We slightly modified the algorithm in Crouse’s paper, so that some of the parameters 

(means and variances) are fixed.  The steps of the EM algorithm for this model are as follows: 

 

Initialization 

Given arbitrary initial assignments of the transition probabilities  and hidden state 

probabilities  for different wavelet trees (Here the superscript t  is an iteration counter): 
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for any fixed j , the state variable  takes a value from ). y
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Expectation step (E-step) 

For each wavelet tree, that is for , we apply the “upward-downward” algorithm: Yy ,,1K=

A. The upward algorithm. 

1) Initialization: assign the values of β  at the “leaves” of the wavelet trees. For 

M  and 1 , let i ,,2,1 K= 2 2,,2 −−= NNn K

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 2

2
,1

,1 2
)(

exp
2
1)(

i

y
n

i

y
n

D
i

σσπ
β .      (36) 

2) Step upward: calculate all the values of β  by the following formulas. For N , 
1 , 1,0=l  and Mi ,,1K
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B. The downward algorithm. 

1) Initialization: To get the values of α  at the “root” of the wavelet trees, we set for 
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2) Step downward: obtain the remaining values of α . For 2,,KNk , 
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Maximization step (M-step) 

A. Update the state probabilities in the wavelet trees. 

For ,  and Nk ,,1K= 11 2,,2 −−−= NkNn K Mi ,,1K= , the new iteration is 
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B. Renew the transition probabilities. 

For , , Nk ,,2 K= 11 2,,2 −−−= NkNn K 1,0=l  and Mi ,,1K= , the following simplified 

equation (to facilitate computations) is used: 
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Convergence checking 

• For 1, , 1  and Mji,1 −= Nk K 1 2,,2 −−−= NkNn K ≤≤ ,1 , set 
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• Set ),max( 21 εεε = . 

If 60.1 −< Eε  (convergence criterion), then we STOP the algorithm and set all 

 .        (46) ),(),( 1
,, jiTjiT t
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Otherwise, we need to set  and , and do the EM algorithm 

steps again until the convergence criterion is met. 
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TABLES 
 
 

Table 1.  Data summary for the Chao Phraya  
Regions Gauging station Number of 

data points
Dry 

probability
Average annual 
rainfall (mm) 

Chao Phraya 
Basin 

No. 111 (CPB111) 5110 0.7102 1052.15 
No. 112 (CPB112) 5232 0.8249   868.60 
No. 117 (CPB117) 5232 0.8562 1007.38 

 
 

Table 2.  Data summary for the large-scale simulation. 
Gauging station Mean Standard deviation 

Observed Simulated Observed Simulated 
CPB111 2.58 2.87 2.24 2.14 
CPB112 2.04 2.38 1.80 1.79 
CPB117 2.36 2.68 3.08 2.02 

 

 
 
 
 

Table 3.  Mean and standard deviation of daily rainfall for the simulated and observed data. 
Gauging station Prediction 

origin 
Mean Standard deviation 

Observed Simulated Observed Simulated 
CPB111 t0 = 4800 2.14 5.41 5.90 11.40 

t0 = 4850 4.67 8.48 10.65 7.70 
t0 = 4900 11.05 10.83 16.78 22.10 

CPB112 t0 = 4800 3.37 5.76 11.30 12.05 
t0 = 4850 2.82 7.26 9.53 8.91 
t0 = 4900 8.72 9.18 15.41 17.10 

CPB117 t0 = 4800 0.45 6.69 4.07 13.27 
t0 = 4850 2.24 5.18 8.21 6.83 
t0 = 4900 3.32 8.09 9.73 8.94 

 
 
 
 

Table 4.  Summary of assumptions of the proposed simulation method. 
Modelling assumptions Parameter 

assumptions 
Monthly rainfall data are deterministic 
 

N = 6 

Linear regression model is used for the deterministic system
 

M = 3 

Wavelet coefficients Dk,n are assumed to follow mixture 
Gaussian distribution and are stochastic 

σ1 = 0.1 
σ2 = 0.4 
σ3 = 0.7 

Transition probabilities for the same period of time in 
different years are the same 
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Table 5.  Data summary for the large-scale simulation by the linear model with 3 parameters. 
Gauging station Mean Standard deviation 

Observed Simulated Observed Simulated 
CPB111 2.58 2.75 2.24 2.12 
CPB112 2.04 2.43 1.80 1.78 
CPB117 2.36 2.43 3.08 1.91 
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FIGURE CAPTIONS 
 
Figure 1.  Wavelet tree. 
 
Figure 2.  Part of the wavelet tree. 
 
Figure 3.  Large-scale simulation using 2-parameter linear function: from  (Day 1) 
to  (Day 730) of (a) CPB111, (b) CPB112, (c) CPB117 

43490 =t
50780 =t

 
Figure 4.  Percentage of FNN for the rainfall data with embedding dimension (a) ; (b) 

; (c) . (These figures are not as identical to the percentage-dimension 
representations encountered in standard nonlinear time series literatures (e.g. Abarbanel, 1996). 
The percentage-scale graphs are provided instead, in order to illustrate the embedding 
dimension for the new time series constructed by Eq. (10))  

1=ed
2=ed 3=ed

 
Figure 5.  Daily rainfall simulation of (a) CPB111; (b) CPB112; (c) CPB117 at different 
prediction origins . 0t

 
Figure 6.  Rainfall accumulation for the data sets (a) CPB111; (b) CPB112; (c) CPB117 at 
different prediction origins . 0t

 
Figure 7.  The large-scale simulation using 3-parameter linear function: from  (Day 
1) to  (Day 730) of (a) CPB111, (b) CPB112, (c) CPB117 

43490 =t
50780 =t
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FIGURES 
 

Dj,k 

Dj-1,2k-1 Dj-1,2k 

Dj-2,4k-3 Dj-2,4k-2 Dj-2,4k-1 Dj-2,4k 

 
Figure 1a 

 
• nND ,  

• • nND ,1−

• • • • nND ,2−

• • • • • • • • nND ,3−

Figure 1b. 
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Figure 2. 
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Figure 4(a). 
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Figure 4(b). 
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Percentage of FNN of CPB111 (de=3)
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Figure 4(c). 
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Figure 5(a). 
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Figure 5(b). 
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Figure 5(c). 
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Figure 6(a). 
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Figure 6(b). 
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Figure 6(c). 

 

 40



 

-1

0

1

2

3

4

5

6

7

8

9

1 101 201 301 401 501 601 701
M
ea
n 
ra
in
fa
ll 
of
 2

6
da
ys
 a
t t
0
(m
m
)

Prediction origin t0 (Day)
Fig  7(a)

Observed

Simulated

-2

-1
0
1

2
3
4

5
6
7

8
9

1 101 201 301 401 501 601 701M
ea
n 
ra
in
fa
ll 
of
 2

6
da
ys
 a
t t
0
(m
m
)

Prediction origin t0 (Day)
Fig 7(b)

Observed

Simulated

-15

-10

-5

0

5

10

15

1 101 201 301 401 501 601 701

M
ea
n 
ra
in
fa
ll 
of
 2

6
da
ys
 a
t t
0
(m
m
)

Prediction origin t0 (Day)
Fig 7(c)

Observed

Simulated

 
Figure 7. 

 41


	RAINFALL DATA SIMULATION BY THE HIDDEN MARKOV MODEL AND DISCRETE WAVELET TRANSFORMATION
	International Centre for Water Hazard and Risk Management, Public Works Research Institute, Tsukuba, Japan

	INTRODUCTION
	SOME PRELIMINARIES
	2.2 Discrete Wavelet Transformation
	2.3 Monte Carlo Method

	3.  TREE MODEL FOR DAILY RAINFALL SERIES
	SIMULATION PROCEDURE
	4.1 N-order scale data
	4.2 Weighted value  
	4.3 Wavelet value  and daily rainfall data

	APPLICATION
	RESULTS
	7.  CONCLUSION
	9.  REFERENCES
	APPENDIX A
	APPENDIX B
	Initialization
	Expectation step (E-step)
	Maximization step (M-step)
	Convergence checking

	TABLES
	Gauging station
	Modelling assumptions
	Gauging station


	FIGURE CAPTIONS
	FIGURES

