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AN EQUIVALENCE FORM OF THE BRUNN-MINKOWSKI
INEQUALITY FOR VOLUME DIFFERENCES

CHANG-JIAN ZHAO® AND WING-SUM CHEUNG**

ABSTRACT. In this paper, we establish an equivalence form of the Brunn-
Minkowski inequality for volume differences. As an application, we obtain
a general and strengthened form of the dual Kneser-Siiss inequality.

1. Introduction

If K and L are convex bodies in R”, then there is convex body K+L such
that

S(K+L,-) = S(K,-) + S(K,-),

where S(K,-) denotes the surface area measure of K. This is a Minkowski’s
existence theorem; see [3] or [9]. The operation + is called Blaschke addition.

Theorem A (The Kneser-Siiss inequality [9]). If K and L are convex bodies
in R™, then

(1) V(K+L)"=D/n > () (n=D/n Ly (p)n=D/n,
with equality if and only if K and L are homothetic.

The volume differences function of convex bodies K and L was defined by
Leng [5]:
Dv(K,D)=V(K)-V(D), DCK.

In [5], Leng established the following Brunn-Minkowski inequality for volume
differences.
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Theorem B. If K, L, and D are convex bodies in R®, D C K, and D' C L is
a homothetic copy of D, then

(2) Du(K + L, D + D")*/" > Du(K, D)™ + Dv(L, D")"/"

with equality if and only if K and L are homothetic and (V(K),V (D)) =
w(V(L),V(D")), where u is a constant.

If p> 1 and K and L contain the origin in their interiors, a convex body
K +, L can be defined by
MK 4+, L,u)? = h(K,u)? + h(L,u)?
for u € S"~!. The operation +, is called the p-Minkowski addition. Firey [2]
proved the following inequality.

Theorem C;. If K and L are convex bodies in R™ containing the origin in
their interiors, p > 1, and 0 < i < n, then

(3) Wi(K +, L)P/(n—i) > Wi(K)p/("_i) + Wi(L)p/("_i).
Furthermore, when p > 1, the equality holds if and only if K and L are dilates
of each other.

Firey’s ideas were transformed into a remarkable extension of the Brunn-
Minkowski theory, called the Brunn-Minkowski-Firey theory, by Lutwak [6],
[7]. Lutwak found the appropriate p-analog S,(K, ), p > 1, of the surface area
measure of a convex body K in R" containing the origin in its interior. In
[6], Lutwak generalized Firey’s inequality (3). He also generalized Minkowski’s
existence theorem, deduced the existence of a convex body K +, L for which

S;D(K—HDIM ) = SP(K7 ) + SP(K7 ')7

(when K and L are origin-symmetric convex bodies), and proved the following
result.

Theorem C, (Lutwak’s p-surface area measure inequality). If K and L are
origin-symmetric convex bodies in R™, and n # p > 1, then

(4) V(K+,L)"P)/m > v (K)p)/m 4y (L) e)in,

Furthermore, when p > 1, the equality holds if and only if K and L are dilates
of each other.

In [8], Lutwak established the following dual Brunn-Minkowsi inequality.
Theorem D. If K, L are star bodies in R", then
(5) V(K+L)Y" < V(K)Y™ + V(L)Y™,
with equality if and only if K and L are dilates of each other.

The aim of this paper is to extend Kneser-Siiss inequality (Theorem A) to
the context of volume differences, which is in turn proved to be equivalent to
Leng’s result (Theorem B). We then extend Lutwak’s p-surface area measure
inequality (Theorem Cs) to the context of volume differences. Finally, a general
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dual Brunn-Minkowski inequality which strengthens Lutwak’s result (Theorem
D) is also given.

2. Definitions and preliminaries

The setting of this paper is n-dimensional Euclidean space R™(n > 2). Let
C™ denote the set of non-empty convex figures (compact, convex subsets) and
K™ denote the subset of C™ consisting of all convex bodies (compact, convex
subsets with non-empty interiors) in R™. We reserve the letter u for unit
vectors and the letter B for the unit ball centered at the origin. The surface
of B is S"~'. We denote by V(K) the n-dimensional volume of a convex
body K. Let hg : S" ! — R denote the support function of K € K", i.e
hg(u) = Maz{u-z : 2z € K},u € S"!, where u - z denotes the usual inner
product of u and x in R™.

Associated with a compact subset K of R™, which is star-shaped with respect
to the origin, is its radial function p(K,-) : S” ' — R, defined for u € S~ 1,
by p(K,u) = Max{\ > 0: lu € K}. If p(K,-) is positive and continuous, K
will be called a star body. Let ¢™ denote the set of star bodies in R™.

Let § denote the Hausdorff metric on K"; i.e., for K,L € K", §(K,L) =
|hix — hr|oo, where | - |o denotes the sup-norm on the space of continuous
functions C'(S™~1) on S"~1L.

1. Mixed volume and dual mixed volume

K, eK"(i=1,2,...,r)and \; (i = 1,2,...,r) are nonnegative real num-
bers, then of fundamental importance is the fact that the volume of Zz:l N K
is a homogeneous polynomial in A; given by

(6) ZAK Z Aiy A, V(K i),

717L

where the sum is taken over all n—tuples (i1,...,1,) of positive integers not
exceeding r. The coefficient V(K,,...;, ), which is called the mized volume of
Ki,..., K, , depends only on the bodles Ki,,...,K;, , and is uniquely deter-

mined by 6). f Ki=--=K,_;,=Kand K,,_;+1 =--- =K, = L, then the
mixed volume V(Kj - -- Kn) is usually written as V;(K, L).
From (6), we easily get: If K, L, M € K™ and a, p > 0, then

(7) Vl(MaaK+/’LL):avl(MaK)+MV1(M7L)
Further, from (6) it follows immediately that
V(K+¢el)-V(K)

(8) lim =nVi(K,L).
e—0 S
If Ky,..., K, € ¢", then the dual mixed volume of Kj, ..., K;, is written
asV(Kl,...,Kn). IfK1:: n_izK,andKn_i+1:~~: n:L,

then V(K,..., K,) is written as V;(K, L). If L = B, the dual mixed volume
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V (K, B) is written as W;(K) and is called the i-th dual Quermassintegral of
K.

2.2. The Blaschke addition and the radial Blaschke addition

If K, L and «, i > 0, then the Theorem of Fenchel-Jessen-Alexandrov tells
that there exists a convex body, unique up to translation, which we denote by
a- K4 - L, such that

S(a-K+p-L,")=aS(K,)+ uS(L,-).

This addition is called Blaschke addition.
The following result will be used later: If K, L, M € K™ and «, u > 0, then

9) Vi(aK+pL, M) = aVi (K, M) + uVi(L, M).
As an aside, we note that corresponding to (8) one has for K, L € K™,

(10) o VEAeK) = V(L) n
e—0 £ n—1

Vi(K, L).

See Goikkman [4].
If K,L € ¢" and «,p > 0, then the radial Blaschke linear combination,
a- K+ - L, is the star body whose radial function is given by

(11) pla KFp- L, )" = ap(K, " + pp(L, )L
We shall call the addition radial Blaschke addition.

3. Lemmas

The following well-known results will be required to prove our main Theo-
rems.

Lemma 1 (Bellman’s inequality). Let a = {a1,...,an} and b= {b1,...,b,} be
two sequences of positive real numbers and p > 1 such that af — Z?:Q al >0

and b — Y0, b > 0, then

n 1/p n 1/p n 1/p
o (-3} (-3 < (oS )
=2 i=2

=2
with equality if and only if a = vb where v is a constant.
Lemma 2 (Minkowski’s inequality for integrals). If f; > 0(j = 1,...,m),
p > 1, then
P 1/p

(13) /S ilfj(u) a5 (u) Si([gnlff(u)dS(u))l/p7

1

with equality if and only if f; are effectively proportional.
This inequality is reversed if 0 <p <1 orp < 0.
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Lemma 3. If K, L, and D are convex bodies in R®, D C K, and D' C L is a
homothetic copy of D, then
(14)  Do(K+L,D+D"=Y/" > Dy(K, D)"=V/" 4 Dy(L, D")(n=D/n

with equality if and only if K and L are homothetic and (V(K),V(D)) =
w(V(L),V(D")), where u is a constant.

Proof. We will prove the lemma using the method of Leng [5].
Applying the Knesser-Siiss inequality (1), we obtain

(15) V(K4L)®= D/ > y(K)=D/n Ly (p)r-b/n
with equality if and only if K and L are homothetic, and
(16) V(D+D)=D/m =y (D)= Ly (pryn=D/m,
From (15) and (16), we obtain
an Du(K+L,D4D') > [V(K)"=D/m 4 y(L)n=1/nn/(n=1)
_ [V(D)("—l)/" + V(D/)(n—l)/n]n/("—l)_
From (17) and applying inequality (12), we have
Dv(K+L,D+D")" =D/ > (V(K) — V(D))"=V/™ + (V(L) — V(D))"= /™,

with equality if and only if K and L are homothetic and (V(K),V (D)) =
w(V(L),V(D')), where pu is a constant. O

Remark 1. In the special case where D and D’ are single points, inequality (14)
becomes the classical Kneser-Siiss Inequality.

4. Main results

We next observe that Lemma 3 is actually equivalent to Leng’s result (The-
orem B).

Theorem 1. If K, L, and D are convex bodies in R", D C K, and D' C L is

a homothetic copy of D, then
(18) Du(K+L,D+D) =Y/ > Dy(K, D)"=V/" 4 Dy(L, D")(n=D/n
& Du(K 4+ L,D + D')Y/™ > Du(K, D)™ + Duv(L, D")*/",

where the conditions of equality are also equivalent.

Proof. (=) Suppose that
Du(K+L, D+D""=Y/" > Dy(K, D)"=Y/™ 4 Dy(L, D)"Y/,

with equality if and only if K and L are homothetic and (V(K),V (D)) =
w(V(L),V(D")), where p is a constant.
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From (10), we obtain
n
m(vl(K, L) - Vl(D7 D/))
. Dv(L+eK,D'+eD) + Dv(D’, L)
m

(19) =1
e—0 IS
- fim (Dv(L, D")("=D/" 4 ¢ Dy(K, D)(=1/n)n/(n=1) L Dy(D’, L)
= 50 € )

with equality if and only if K and L are homothetic and (V(K),V (D)) =
w(V(L),V(D")), where p is a constant.
On the other hand, from (19) and in view of L’Hopital’s rule, we have

‘/1(K7 L) - ‘/I(DaD/)
lim (Do(L, D" =D/n e Dy(K, D) =D/mM)Y = Dy (K, D)= D/m
E—

Y

(20)
= Dv(L,D")"/"Duv(K, D)"Y/,
Suppose that M, N € K™ and N C M, from (7) and (20), it follows that
Vi(M,K + L) — Vi(N,D + D)
(21) = (Vi(M,K) — Vi(N, D)) + (Vi(M,L) — V1(N,D"))
> (Dv(K, D)™ + Dv(L,D')"/")Dv(M, N)"=D/,
If we take M = K+Land N = D+D’in (21), inviewof V(K, ..., K) = V(K),

we have
Dv(K 4+ L,D + D')Y/™ > Dv(K, D)™ + Duv(K, D)*/",

with equality if and only if K and L are homothetic and (V(K),V (D)) =
w(V(L),V(D")), where pu is a constant.
(<) Suppose that

Du(K + L, D + D')"/" > Du(I, D)"/" 4 Du(L, D)/,

with equality if and only if K and L are homothetic and (V(K),V (D)) =
w(V(L),V(D")), where p is a constant.

From (8), we have
n(Vi(K, L) — Vi(D,D"))

m Dv(K +¢eL,D +eD'")+ Dv(D, K)

(22) = I :
o iy PV, D)Y"™ + eDu(L, D")'/™)* + Dv(D, K)
T e—0 I3 ’

with equality if and only if K and L are homothetic and (V(K),V (D)) =
w(V(L),V(D")), where p is a constant.
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On the other hand, from (22) and in view of L'Hépital’s rule, we have
VA(K, L)~ VA(D, D)
(23) > lim(Du(K, D)™ + eDu(L, D")V/™\*"*Dy(L, D')}/™
= Du(K, D)"=Y/"Dy(L, D')Y/™.
From (9) and (23), for any M, N € K" and N C M, we have
Vi(K+L,M) —Vi(D+D',N)
(24) = V(K,M) - Vi(D,N)) + (i(L, M) = Vi(D',N))
> (Dv(K, D)"=Y/" L Dy(L, D")"=Y/™) Du(M, N)/™.
If we take M = K+L and N = D+D’ in (24), and in view of V(K,...,K) =
V(K), we obtain inequality (14). O
Remark 2. In the special case where D and D’ are single points, Theorem 1
gives the following important result.

Corollary 1. The Knesser-Siss inequality is equivalent to the Bunn-Minkowski
inequality, namely, for K, L € K",

V(K—T—L)(n_l)/n > V(K)(n—l)/n + V(L)(n—l)/n
& V(E+LY">V(E)"+ V(L)Y
with equality if and only if K and L are homothetic.

Similarly, from the Lutwak’s p-surface area measure inequality (4) and the
Bellman’s inequality, we can get the following result which is a general form of

(4).
Theorem 2. If K, L, and D are origin-symmetric convex bodies in R™, D C K,
and D' C L is a homothetic copy of D, then forn #p > 1,

(25)  Duv(K4,L,D+,D")""P/" > Dy(K, D)""P/" 1 Dy(L, D')n=P)/",

Furthermore, when p > 1, the equality holds if and only if K and L are dilates
of each other and (V(K),V(D)) = w(V(L),V(D’)), where u is a constant.

Remark 3. Note that the Knesser-Siiss inequality (14) for volume differences
corresponds to the case p = 1 in (25). On the other hand, if D and D’ are
single points, (25) reduces to the classical Knesser-Siiss inequality.

Finally, the following is a general and strengthened form of Lutwak’s dual
Brunn-Minkowski inequality.

Theorem 3. If K, L € o™, a € [0,1], then fori <1,
Wi(K_T_L)(nfl)/("*i)
(aK+(1 —a)L)= /=) L (1 — a)KfaL)—D/ (0=

(26)  <W;
Wi(K)(n—l)/(n—i) + Wi(L)(n—l)/(n_i)7

IN
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with equality if and only if K and L are dilates of each other.
These inequalities are reversed fori >n or 1 <i < n.

Proof. Noting that W;(K) = Jgn—r p(K)"""dS(u), and from (11), (13), we
have for i < 1,

Wi (K L)/ (=)
) ) | (1) ()
(3 [ pucizarase)
Sn—l

a n
. (n—=1)/(n—1)
1 n— n— n—1i)/(n—1
(5 [ o stz ) s )

n

< <1 /Snil (Oép(K, u)n—l + (1 _ a)p(L7u)n—1)(”*i)/(”*1) dS(u)

(n—1)/(n—1)
; )

1 (n=1)/(n—i)

+ ( /SM (1 = a)p(K, u)™~" + ap(L,u)n=1) "~/ dS(u))

n
(n—1)/(n—1)

(1 /s”‘l (pla- K¥+(1 —a)- Lu)"™ dS(u)>

' (1 /5"—1 (p((1 =) K+a- Lu)"™ ds(u)> B

n
=W;(a- K+(1—a) - L)Y/~ L Wi((1 - @) - K+a - L)"=D/0=0),
On the other hand, for i < 1,
Wia - K+(1 —a) - L)=D/(n=9)
1 y ‘ (n—1)/(n—i)
( /Sn_l pla- K+(1 — a)L)”’dS(u))

n

IN

1 ‘ (n=1)/(n—1)
e < / (K, u)""dS(u))
Sn—1

n

(n—1)/(n—1)
; )

+(1—a) (1/5 ) p(L,u)""'dS (u)

= aW;(K)=D/0=0 (1 — o)W (L) D/ (=),
Similarly, we get
Wi((1—a)-K+¥a- L) D/0=0 < (1—a)W;(K)"= D/ (=0 L oW, (L) =D/ (=),
Hence,

Wila - K¥+(1—a)-L)Y/0=0 LW, (1 -a)- Kfa - L)"D/(0=9)
< Wi(K)(nfl)/(n*i) + Wi(L)(nfl)/(n*i)’

with equality if and only if K and L are dilates of each other.
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The cases of i > n and 1 < ¢ < n are obtained analogously. O

Remark 4. Taking ¢ = 0, inequality (26) becomes the following strengthened
form of the dual Knesser-Siiss inequality.

Corollary 2. If K, L € o™, a € [0,1], then

(27)

V(K$L)™D/" < V(aK (1 — @)L)™ /" 4 V((1 — a)K FaL)=D/m
< V(K)(n—l)/n + V(L)(n—l)/n’

with equality if and only if K and L are dilates of each other.
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