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AN EQUIVALENCE FORM OF THE BRUNN-MINKOWSKI
INEQUALITY FOR VOLUME DIFFERENCES

Chang-Jian Zhao∗ and Wing-Sum Cheung∗∗

Abstract. In this paper, we establish an equivalence form of the Brunn-
Minkowski inequality for volume differences. As an application, we obtain
a general and strengthened form of the dual Kneser-Süss inequality.

1. Introduction

If K and L are convex bodies in Rn, then there is convex body K+̇L such
that

S(K+̇L, ·) = S(K, ·) + S(K, ·),
where S(K, ·) denotes the surface area measure of K. This is a Minkowski’s
existence theorem; see [3] or [9]. The operation +̇ is called Blaschke addition.

Theorem A (The Kneser-Süss inequality [9]). If K and L are convex bodies
in Rn, then

(1) V (K+̇L)(n−1)/n ≥ V (K)(n−1)/n + V (L)(n−1)/n,

with equality if and only if K and L are homothetic.

The volume differences function of convex bodies K and L was defined by
Leng [5]:

Dv(K, D) = V (K)− V (D), D ⊂ K.

In [5], Leng established the following Brunn-Minkowski inequality for volume
differences.
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Theorem B. If K, L, and D are convex bodies in Rn, D ⊂ K, and D′ ⊂ L is
a homothetic copy of D, then

(2) Dv(K + L,D + D′)1/n ≥ Dv(K, D)1/n + Dv(L, D′)1/n

with equality if and only if K and L are homothetic and (V (K), V (D)) =
µ(V (L), V (D′)), where µ is a constant.

If p ≥ 1 and K and L contain the origin in their interiors, a convex body
K +p L can be defined by

h(K +p L, u)p = h(K,u)p + h(L, u)p

for u ∈ Sn−1. The operation +p is called the p-Minkowski addition. Firey [2]
proved the following inequality.

Theorem C1. If K and L are convex bodies in Rn containing the origin in
their interiors, p ≥ 1, and 0 ≤ i < n, then

(3) Wi(K +p L)p/(n−i) ≥ Wi(K)p/(n−i) + Wi(L)p/(n−i).

Furthermore, when p > 1, the equality holds if and only if K and L are dilates
of each other.

Firey’s ideas were transformed into a remarkable extension of the Brunn-
Minkowski theory, called the Brunn-Minkowski-Firey theory, by Lutwak [6],
[7]. Lutwak found the appropriate p-analog Sp(K, ·), p ≥ 1, of the surface area
measure of a convex body K in Rn containing the origin in its interior. In
[6], Lutwak generalized Firey’s inequality (3). He also generalized Minkowski’s
existence theorem, deduced the existence of a convex body K +p L for which

Sp(K+̇pL, ·) = Sp(K, ·) + Sp(K, ·),
(when K and L are origin-symmetric convex bodies), and proved the following
result.

Theorem C2 (Lutwak’s p-surface area measure inequality). If K and L are
origin-symmetric convex bodies in Rn, and n 6= p ≥ 1, then

(4) V (K+̇pL)(n−p)/n ≥ V (K)(n−p)/n + V (L)(n−p)/n.

Furthermore, when p > 1, the equality holds if and only if K and L are dilates
of each other.

In [8], Lutwak established the following dual Brunn-Minkowsi inequality.

Theorem D. If K, L are star bodies in Rn, then

(5) V (K+̆L)1/n ≤ V (K)1/n + V (L)1/n,

with equality if and only if K and L are dilates of each other.

The aim of this paper is to extend Kneser-Süss inequality (Theorem A) to
the context of volume differences, which is in turn proved to be equivalent to
Leng’s result (Theorem B). We then extend Lutwak’s p-surface area measure
inequality (Theorem C2) to the context of volume differences. Finally, a general
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dual Brunn-Minkowski inequality which strengthens Lutwak’s result (Theorem
D) is also given.

2. Definitions and preliminaries

The setting of this paper is n-dimensional Euclidean space Rn(n > 2). Let
Cn denote the set of non-empty convex figures (compact, convex subsets) and
Kn denote the subset of Cn consisting of all convex bodies (compact, convex
subsets with non-empty interiors) in Rn. We reserve the letter u for unit
vectors and the letter B for the unit ball centered at the origin. The surface
of B is Sn−1. We denote by V (K) the n-dimensional volume of a convex
body K. Let hK : Sn−1 → R denote the support function of K ∈ Kn, i.e.,
hK(u) = Max{u · x : x ∈ K}, u ∈ Sn−1, where u · x denotes the usual inner
product of u and x in Rn.

Associated with a compact subset K of Rn, which is star-shaped with respect
to the origin, is its radial function ρ(K, ·) : Sn−1 → R, defined for u ∈ Sn−1,
by ρ(K, u) = Max{λ ≥ 0 : λu ∈ K}. If ρ(K, ·) is positive and continuous, K
will be called a star body. Let ϕn denote the set of star bodies in Rn.

Let δ denote the Hausdorff metric on Kn; i.e., for K,L ∈ Kn, δ(K,L) =
|hK − hL|∞, where | · |∞ denotes the sup-norm on the space of continuous
functions C(Sn−1) on Sn−1.

2.1. Mixed volume and dual mixed volume

If Ki ∈ Kn (i = 1, 2, . . . , r) and λi (i = 1, 2, . . . , r) are nonnegative real num-
bers, then of fundamental importance is the fact that the volume of

∑r
i=1 λiKi

is a homogeneous polynomial in λi given by

(6) V (
r∑

i=1

λiKi) =
∑

i1,...,in

λi1 · · ·λinV (Ki1···in),

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not
exceeding r. The coefficient V (Ki1···in), which is called the mixed volume of
Ki, . . . , Kin , depends only on the bodies Ki1 , . . . ,Kin , and is uniquely deter-
mined by (6). If K1 = · · · = Kn−i = K and Kn−i+1 = · · · = Kn = L, then the
mixed volume V (K1 · · ·Kn) is usually written as Vi(K, L).

From (6), we easily get: If K, L,M ∈ Kn and α, µ ≥ 0, then

(7) V1(M,αK + µL) = αV1(M, K) + µV1(M, L).

Further, from (6) it follows immediately that

(8) lim
ε→0

V (K + εL)− V (K)
ε

= nV1(K, L).

If K1, . . . , Kn ∈ ϕn, then the dual mixed volume of K1, . . . ,Kn is written
as Ṽ (K1, . . . , Kn). If K1 = · · · = Kn−i = K, and Kn−i+1 = · · · = Kn = L,

then Ṽ (K1, . . . ,Kn) is written as Ṽi(K, L). If L = B, the dual mixed volume
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Ṽ (K, B) is written as W̃i(K) and is called the i-th dual Quermassintegral of
K.

2.2. The Blaschke addition and the radial Blaschke addition

If K, L and α, µ ≥ 0, then the Theorem of Fenchel-Jessen-Alexandrov tells
that there exists a convex body, unique up to translation, which we denote by
α ·K+̇µ · L, such that

S(α ·K+̇µ · L, ·) = αS(K, ·) + µS(L, ·).
This addition is called Blaschke addition.

The following result will be used later: If K, L,M ∈ Kn and α, µ ≥ 0, then

(9) V1(αK+̇µL,M) = αV1(K, M) + µV1(L,M).

As an aside, we note that corresponding to (8) one has for K, L ∈ Kn,

(10) lim
ε→0

V (L+̇εK)− V (L)
ε

=
n

n− 1
V1(K,L).

See Goikkman [4].
If K, L ∈ ϕn and α, µ ≥ 0, then the radial Blaschke linear combination,

α ·K+̆µ · L, is the star body whose radial function is given by

(11) ρ(α ·K+̆µ · L, ·)n−1 = αρ(K, ·)n−1 + µρ(L, ·)n−1.

We shall call the addition radial Blaschke addition.

3. Lemmas

The following well-known results will be required to prove our main Theo-
rems.

Lemma 1 (Bellman’s inequality). Let a = {a1, . . . , an} and b = {b1, . . . , bn} be
two sequences of positive real numbers and p > 1 such that ap

1 −
∑n

i=2 ap
i > 0

and bp
1 −

∑n
i=2 bp

i > 0, then

(12)

(
ap
1 −

n∑

i=2

ap
i

)1/p

+

(
bp
1 −

n∑

i=2

bp
i

)1/p

≤
(

(a1 + b1)p −
n∑

i=2

(ai + bi)p

)1/p

with equality if and only if a = υb where υ is a constant.

Lemma 2 (Minkowski’s inequality for integrals). If fj ≥ 0(j = 1, . . . , m),
p > 1, then

(13)




∫

Sn−1




m∑

j=1

fj(u)




p

dS(u)




1/p

≤
m∑

j=1

(∫

Sn−1
fp

j (u)dS(u)
)1/p

,

with equality if and only if fj are effectively proportional.
This inequality is reversed if 0 < p < 1 or p < 0.
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Lemma 3. If K,L, and D are convex bodies in Rn, D ⊂ K, and D′ ⊂ L is a
homothetic copy of D, then

(14) Dv(K+̇L,D+̇D′)(n−1)/n ≥ Dv(K, D)(n−1)/n + Dv(L,D′)(n−1)/n

with equality if and only if K and L are homothetic and (V (K), V (D)) =
µ(V (L), V (D′)), where µ is a constant.

Proof. We will prove the lemma using the method of Leng [5].
Applying the Knesser-Süss inequality (1), we obtain

(15) V (K+̇L)(n−1)/n ≥ V (K)(n−1)/n + V (L)(n−1)/n

with equality if and only if K and L are homothetic, and

(16) V (D+̇D′)(n−1)/n = V (D)(n−1)/n + V (D′)(n−1)/n.

From (15) and (16), we obtain

(17)
Dv(K+̇L,D+̇D′) ≥ [V (K)(n−1)/n + V (L)(n−1)/n]n/(n−1)

− [V (D)(n−1)/n + V (D′)(n−1)/n]n/(n−1).

From (17) and applying inequality (12), we have

Dv(K+̇L, D+̇D′)(n−1)/n ≥ (V (K)− V (D))(n−1)/n + (V (L)− V (D′))(n−1)/n,

with equality if and only if K and L are homothetic and (V (K), V (D)) =
µ(V (L), V (D′)), where µ is a constant. ¤

Remark 1. In the special case where D and D′ are single points, inequality (14)
becomes the classical Kneser-Süss Inequality.

4. Main results

We next observe that Lemma 3 is actually equivalent to Leng’s result (The-
orem B).

Theorem 1. If K, L, and D are convex bodies in Rn, D ⊂ K, and D′ ⊂ L is
a homothetic copy of D, then

(18)
Dv(K+̇L,D+̇D′)(n−1)/n ≥ Dv(K, D)(n−1)/n + Dv(L,D′)(n−1)/n

⇔ Dv(K + L,D + D′)1/n ≥ Dv(K, D)1/n + Dv(L, D′)1/n,

where the conditions of equality are also equivalent.

Proof. (⇒) Suppose that

Dv(K+̇L,D+̇D′)(n−1)/n ≥ Dv(K, D)(n−1)/n + Dv(L,D′)(n−1)/n,

with equality if and only if K and L are homothetic and (V (K), V (D)) =
µ(V (L), V (D′)), where µ is a constant.
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From (10), we obtain

(19)

n

n− 1
(V1(K,L)− V1(D,D′))

= lim
ε→0

Dv(L+̇εK,D′+̇εD) + Dv(D′, L)
ε

≥ lim
ε→0

(Dv(L,D′)(n−1)/n + εDv(K, D)(n−1)/n)n/(n−1) + Dv(D′, L)
ε

,

with equality if and only if K and L are homothetic and (V (K), V (D)) =
µ(V (L), V (D′)), where µ is a constant.

On the other hand, from (19) and in view of L’Hôpital’s rule, we have

(20)

V1(K,L)− V1(D,D′)

≥ lim
ε→0

(Dv(L,D′)(n−1)/n + εDv(K, D)(n−1)/n)1/(n−1)Dv(K,D)(n−1)/n

= Dv(L,D′)1/nDv(K,D)(n−1)/n.

Suppose that M, N ∈ Kn and N ⊂ M , from (7) and (20), it follows that

(21)

V1(M, K + L)− V1(N, D + D′)

= (V1(M, K)− V1(N, D)) + (V1(M, L)− V1(N, D′))

≥ (Dv(K,D)1/n + Dv(L,D′)1/n)Dv(M, N)(n−1)/n.

If we take M = K+L and N = D+D′ in (21), in view of V (K, . . . , K) = V (K),
we have

Dv(K + L,D + D′)1/n ≥ Dv(K,D)1/n + Dv(K, D)1/n,

with equality if and only if K and L are homothetic and (V (K), V (D)) =
µ(V (L), V (D′)), where µ is a constant.

(⇐) Suppose that

Dv(K + L,D + D′)1/n ≥ Dv(K,D)1/n + Dv(L,D′)1/n,

with equality if and only if K and L are homothetic and (V (K), V (D)) =
µ(V (L), V (D′)), where µ is a constant.

From (8), we have

(22)

n(V1(K,L)− V1(D,D′))

= lim
ε→0

Dv(K + εL,D + εD′) + Dv(D, K)
ε

≥ lim
ε→0

(Dv(K,D)1/n + εDv(L, D′)1/n)n + Dv(D, K)
ε

,

with equality if and only if K and L are homothetic and (V (K), V (D)) =
µ(V (L), V (D′)), where µ is a constant.
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On the other hand, from (22) and in view of L’Hôpital’s rule, we have

(23)

V1(K,L)− V1(D, D′)

≥ lim
ε→0

(Dv(K, D)1/n + εDv(L,D′)1/n)n−1Dv(L,D′)1/n

= Dv(K,D)(n−1)/nDv(L,D′)1/n.

From (9) and (23), for any M, N ∈ Kn and N ⊂ M , we have

(24)

V1(K+̇L,M)− V1(D+̇D′, N)

= (V1(K,M)− V1(D, N)) + (V1(L, M)− V1(D′, N))

≥ (Dv(K,D)(n−1)/n + Dv(L,D′)(n−1)/n)Dv(M,N)1/n.

If we take M = K+̇L and N = D+̇D′ in (24), and in view of V (K, . . . , K) =
V (K), we obtain inequality (14). ¤

Remark 2. In the special case where D and D′ are single points, Theorem 1
gives the following important result.

Corollary 1. The Knesser-Süss inequality is equivalent to the Bunn-Minkowski
inequality, namely, for K,L ∈ Kn,

V (K+̈L)(n−1)/n ≥ V (K)(n−1)/n + V (L)(n−1)/n

⇔ V (K + L)1/n ≥ V (K)1/n + V (L)1/n,

with equality if and only if K and L are homothetic.

Similarly, from the Lutwak’s p-surface area measure inequality (4) and the
Bellman’s inequality, we can get the following result which is a general form of
(4).

Theorem 2. If K, L, and D are origin-symmetric convex bodies in Rn, D ⊂ K,
and D′ ⊂ L is a homothetic copy of D, then for n 6= p ≥ 1,

(25) Dv(K+̇pL,D+̇pD
′)(n−p)/n ≥ Dv(K, D)(n−p)/n + Dv(L,D′)(n−p)/n.

Furthermore, when p > 1, the equality holds if and only if K and L are dilates
of each other and (V (K), V (D)) = µ(V (L), V (D′)), where µ is a constant.

Remark 3. Note that the Knesser-Süss inequality (14) for volume differences
corresponds to the case p = 1 in (25). On the other hand, if D and D′ are
single points, (25) reduces to the classical Knesser-Süss inequality.

Finally, the following is a general and strengthened form of Lutwak’s dual
Brunn-Minkowski inequality.

Theorem 3. If K, L ∈ ϕn, α ∈ [0, 1], then for i < 1,

(26)

W̃i(K+̆L)(n−1)/(n−i)

≤ W̃i(αK+̆(1− α)L)(n−1)/(n−i) + W̃i((1− α)K+̆αL)(n−1)/(n−i)

≤ W̃i(K)(n−1)/(n−i) + W̃i(L)(n−1)/(n−i),
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with equality if and only if K and L are dilates of each other.
These inequalities are reversed for i > n or 1 < i < n.

Proof. Noting that W̃i(K) =
∫

Sn−1 ρ(K)n−idS(u), and from (11), (13), we
have for i < 1,

W̃i(K+̆L)(n−1)/(n−i)

=
(

1
n

∫

Sn−1
ρ(K+̆L, u)n−idS(u)

)(n−1)/(n−i)

=
(

1
n

∫

Sn−1

(
ρ(K,u)n−1 + ρ(L, u)n−1

)(n−i)/(n−1)
dS(u)

)(n−1)/(n−i)

≤
(

1
n

∫

Sn−1

(
αρ(K,u)n−1 + (1− α)ρ(L, u)n−1

)(n−i)/(n−1)
dS(u)

)(n−1)/(n−i)

+
(

1
n

∫

Sn−1

(
(1− α)ρ(K, u)n−1 + αρ(L, u)n−1

)(n−i)/(n−1)
dS(u)

)(n−1)/(n−i)

=
(

1
n

∫

Sn−1

(
ρ(α ·K+̆(1− α) · L, u)

)n−i
dS(u)

)(n−1)/(n−i)

+
(

1
n

∫

Sn−1

(
ρ((1− α) ·K+̆α · L, u)

)n−i
dS(u)

)(n−1)/(n−i)

= W̃i(α ·K+̆(1− α) · L)(n−1)/(n−i) + W̃i((1− α) ·K+̆α · L)(n−1)/(n−i).

On the other hand, for i < 1,

W̃i(α ·K+̆(1− α) · L)(n−1)/(n−i)

=
(

1
n

∫

Sn−1
ρ(α ·K+̆(1− α)L)n−idS(u)

)(n−1)/(n−i)

≤ α

(
1
n

∫

Sn−1
ρ(K, u)n−idS(u)

)(n−1)/(n−i)

+ (1− α)
(

1
n

∫

Sn−1
ρ(L, u)n−idS(u)

)(n−1)/(n−i)

= αW̃i(K)(n−1)/(n−i) + (1− α)W̃i(L)(n−1)/(n−i).

Similarly, we get

W̃i((1−α)·K+̆α·L)(n−1)/(n−i) ≤ (1−α)W̃i(K)(n−1)/(n−i)+αW̃i(L)(n−1)/(n−i).

Hence,

W̃i(α ·K+̆(1− α) · L)(n−1)/(n−i) + W̃i((1− α) ·K+̆α · L)(n−1)/(n−i)

≤ Wi(K)(n−1)/(n−i) + Wi(L)(n−1)/(n−i),

with equality if and only if K and L are dilates of each other.
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The cases of i > n and 1 < i < n are obtained analogously. ¤

Remark 4. Taking i = 0, inequality (26) becomes the following strengthened
form of the dual Knesser-Süss inequality.

Corollary 2. If K, L ∈ ϕn, α ∈ [0, 1], then
(27)

V (K+̆L)(n−1)/n ≤ V (αK+̆(1− α)L)(n−1)/n + V ((1− α)K+̆αL)(n−1)/n

≤ V (K)(n−1)/n + V (L)(n−1)/n,

with equality if and only if K and L are dilates of each other.
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