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Large values of error terms of a class of
arithmetical functions

By Yuk-Kam Lau and Kai-Man Tsang at Hong Kong

Abstract. We consider the error terms of a class of arithmetical functions whose
Dirichlet series satisfy a functional equation with multiple gamma factors. Our aim is to
establish Q. results to a subclass of these arithmetical functions with a good localization of
the occurrence of the extreme values. As applications, we improve the Q4 results of some
special 3-dimensional ellipsoids of other writers and extend our result to other ellipsoids.

1. Introduction

Our objective in this paper is to investigate the occurrence of large values of the error

term in the summatory formula ) a(n) of an arithmetical function a(n). We shall consider
nsx

a class of arithmetical functions a(n) whose associated Dirichlet series satisfy a type of
functional equations with multiple gamma factors. This class is very wide and contains a
lot of well-known and classical examples, such as the Ramanujan function (r), the divisor
function d(n) in Dirichlet’s divisor problem, the counting function r(n) of representations
of n as a sum of two squares in the circle problem, some of other divisor functions and the
enumerating function of representations of an integer by a quadratic form.

The formulation and research in the general context was enhanced by Chandrasek-
haran and Narasimhan (see [6], [7]) although the characteristic (i.e. the relation of satisfying
a functional equation) had been known earlier. Their work was later continued by other
authors, such as Berndt [2]-[5], Hafner [10], [11], Ivi¢ [12], and Redmond [14], [15]. Up-to-
date, the studied area covers the Voronoi-type series expansion, mean square formulas,
Q, -results, localization of large values and sign-changes. Concerning the large values, one
should note the articles of Hafner [11] and Ivi¢ [12]. The former gave the best Q-results (or
Q, -results) to date but was unable to localize the occurrence of the large values. The latter
one [12] can do this but with the extreme values not as sharp as those obtained in [11].

In this paper, we focus on a subclass of these arithmetical functions for which we can
give extreme values sharper than those obtained in Theorem 1 of [12] and at the same time,
provide good localization on the occurrence of such values. (See our main result Theorem 1
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in Section 3.) Particularly interesting examples in this subclass include the generalized divi-
sor function o_y/,(n) and the counting function r(Q, n) of representations of an integer n by
a positive definite ternary quadratic form Q (refer to Theorem 2 in Section 5). Furthermore,
due to the different conditions required, we can deduce some consequences which are not
covered in Hafner [11]. More specifically, let us consider the problem of counting lattice
points in three-dimensional ellipsoids. (The corresponding arithmetical function is 7(Q, n).)
Hafner’s approach cannot give Q. -results in this case (see [11], Section 5.2, p. 72-73). In
fact, a recent paper of Adhikari and Pétermann [1] proved that the error terms in the lattice
points problem of six different ellipsoids, including the sphere, are Q ;. (X 1/21oglog X). With
our approach, we can replace the loglog X by 1/log X and extend the (improved) results to
other three-dimensional ellipsoids (those determined by integral positive definite quadratic
forms). It should be remarked that the Q_-result for the case of a sphere was obtained long
ago by Szegd [16] and the Q-result was proved recently by the second author [17].

2. Definitions and some properties

Throughout this paper, we use ¥ » Z (or Z « Y) to mean that |Z| < CY for some
constant C > 0, and Y < Z to mean both ¥ « Z and Z « Y hold.

Let {a,} and {b,} be two sequences of complex numbers, not identically zero. Let

{2} and {u,} be two strictly increasing sequences of positive numbers, both of which tend
9] 8]

to co0. Suppose that the series ¢(s) = > a,d,* and ¥(s) = >° buu;,* both converge absolutely
n=1 n=1

in some half-planes Res > o7 and Res > o} respectively (o and o are their abscissas of
absolute convergence). For each v=1,2,...,N, we let o, > 0, f§, € C and define

N N
M) = TIT(@s+5,), a=Y 0.
v=1 =1

Let 6 € R and suppose ¢ and y satisfy the functional equation
A(s)¢(s) = A6 — )Y (0 —5)

in the following sense: there exists a compact set S, which contains all the singularities of
A(s)4(s), and there exists a meromorphic function y(s), which is holomorphic in the com-
plement of S, such that '

(i) |tl|1~£20 %(o + it) = 0 uniformly in every interval 7, < o < 7, and

(i)
(s) = A(s)g(s) for'c > o},
L  A@G = s)Y(6—s) foro<d—oj.
Let
so=sup{|s:se S} and 2 =max{|f,|¢:v=1,2,...,N}.

Choose two constants ¢ > max (o}, g}, 50, %), R > max(so, t). Let y > ¢+ be any suffi-
ciently large but fixed number such that both é — y and d — (y + 1/«) are not integers. Let
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%, be the boundary of the rectangle with vertices at ¢ + iR and 6 —y & iR, taken in the
anti-clockwise direction (so it encircles S). Define for x > 0,

(2.1) Ep(x) = A4p(x) — M)y(x)
where

1 > ay(x — A,)”  and Mp(x):_l_ I'(s)

- . o A— 5P (s.
T(p+1) 2 Znig{ I'(s+p+1) #(s)x s

Ap(x) =

. . . |
The prime in Z' means the last term in the sum is equal to Ea,, ifp=0and x = 4,.

Lemma 2.1. Suppose that for each u > oy,

b”
2.2 su —0
( ) 0<t81 X7“<1112<:(X+t)7“luu 1/(2¢)

as X — oo. Then for any y > 0 and any p > 200; — 0.0 — 3/2, we have

o0
(23) Ey(y) = Zwﬂpfp(yﬂn)
where
1 T — 5)A(s) -
=— S ds.
SO = ot b TEHp+ T-0AG =9

Here A =min(o} —2/0,6/2—1/(2a)) and Gr(A,y) denotes the contour which joins the
points L —ico, A —iR, y — iR, y+ iR, A+ iR and A+ ico in such order. The series in (2.3)
converges uniformly on any finite closed interval in (0, c0) where A,(x) is continuous.

Proof. 'This is Hafner [10], Theorem B.

In [10], Lemma 2.1, Hafner proved an asymptotic formula for f,(y) in which the con-
stant implicit in the O-symbol is dependent upon p. In the following Lemma 2.2, we show
that, when p lies in a fixed finite interval, the constant implicit in the O-symbol in (2.4)
below can be made independent of p.

Lemma 2.2. Let p, be fixed such that 2oy —do—7/2 > py > m1n(2(xab —ad—4,-1).
Then for any y > 0 and any p € [py, po + 1], we have

24) £ =% elp)y’ ) cos(hy'C) + ke (p)r) + O(y% %),
v=0,1

where the O-constant is independent of p, and
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y=1

N
h = 2o0.exp (—a_l > o, log av> ,

eo(p) = (2a/ )" (hm) ™', |

e1(p) = (20/h)? x (a quadratic polynomial in p),

Proof. By Stirling’s formula,

1 1 1
logT'(z) = (z—1/2)logz —z+3 log2n+@+ O(Izl—:")

for |argz| < 7 — ¢ and |z| — co. Assume w € C with |w| < W where W > 0 is a fixed con-
stant. Then for |z| sufficiently large, we have ‘
|
\
ci(w) c(w 1 ‘
d)+ﬂﬁ+0<fﬁ’ |
z 2l |

where c;(w) (i = 1,2) are polynomials in w and the O-constant depends only on W. Let

1
logT(z+w)=(z+w— 1/2)1ogz—z+§ log 27 +

Fp= k\’(p) - V/Z,
a, = —(8/2+ 1/(49) + p/(22)),
(6 — s)A(s)

G =
) = T pr1=9AG =)
and
Ff(s) = ey(p)20h~®+294 T (205 + 20a, — v) cos(m(as + 0@, + )

where eo(p) = (2a/h)? (hm)™* and e,(p) = (2¢/h)? x (a polynomial in p). Following
through the computation in [8], (9)—(11), we get

(2.5) Gy(s) = F{(s) + F{ () + F3 (s) + Fg (s)%(s)
with
(2.6) 2(s) = O(ls|”)

where the O-constant is independent of p (but depends on p,). Moreover, for any fixed real
numbers ¢’ and ¢”, we have

(2.7)  |FP(s)] < |T(2es + 20a, — v) cos(n(as + oa, + )| = |g| P21/
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and
|Gp(5)]| ~ |FE (s)] = |f@0~0+D
uniformly in ¢’ < o < ¢” and |#| = R. Hence, we can shift the path of integration to deduce

2 1

(2.8) Flry= 22— [ FP(s)y*™P~*ds
v=0 ek (gR(—a 7)’
1
. l4 o+p=s Jg.
"om @R(—fap,y) F Ry ’

As 2oy — 0. — 5/2 > py + 1 = p, we have 20(y +a,) > 2,50 F/(s) (v=0, 1,2) hasno
poles on the right side of ¥z(—a,,y). Together with (2.7) and applying Cauchy’s Theorem,

1

P o+p—s d
M%(I EP(s)y*~" ds

+7)

20
27 %

o+pta,—v/(2e) =

=e,(p)y [ T(Qas+20a, —v)

—ap, }’)

x cos (m(os + o, + 1)) (hy'/ @) ~est247) g
ay+ico

2
= e,(p)y) — z | T(Q2us+ 20a, —v)
201 . oo :

x cos(n(as -+ aa, + 1)) (hy'/ @)=+ “ar=) s

where g, = —a, +v/(2¢) + 1/(8a). Using the fact that
g+ioo ’
/@2ni) [ T(s)cos(f+ ms/2)y *ds =cos(y+f) for0<o<1,

G—i0

we see that the last integral equals

1/4+ico ’ i
[ T(s)cos(ky(p)m + ms/2) (hy"/ )~ ds = - cos(iy"/® + ke, (p)r)
1/4—ic0
and hence
1 g oL 0.
(2.9 5 ( [ FP(s)y**?~5ds = e (p)y%/C )cos(hyl/(2 (N3 ky(p)r).
Cr(—ap,y)

: 2
From (2.5), we observe that FJ (s)%(s) = G,(s) — >, F?(s) represents a meromorphic
v=0

function, and it has at most O(x~!) simple poles, contributed by the factor I'(6 — s) of
G,(s), in the region between r(—a,,y) and Gr(—a, + 1/a,y + 1/a). No pole of F} (s)2(s)
lies on Gr(—a, + 1/a,y +1/a) due to the condition that § — (y + 1/«) is not an integer.
Using (2.7), we now shift the path of integration of the last integral in (2.8) and it becomes
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(2.10) * i) FL(s)(s)y*P~* ds + O( yoHPT) « Y1

2mi ‘€R(—a,,+1/a,y+1/a)

by (2.6), where the implied constants are independent of p. Again, we have used

20y — e —5/2>p

and (2.7) to derive the last bound in (2.10). In view of (2.8), our assertion then follows from |
(2.9) and (2.10).

3. Assumptions and the main result ‘
From now on we consider the subclass of {a,} for which the following assumptions
are valid:
(x) All the by’s are real, 0. = 1,6 =0,0% 07, |ty — | » 1 for m +mn, the condition |

(2.2) holds, and for some absolute constants n and K, ;

(31) Z b% — 77x6+1/2 10g21cx_|_ 0(x(5+1/2 logZK—l x)'
H,=x

Under these assumptions, we see that Y |by| < x0/2+3/4 1og" x and hence o} < J/2 +3/4. |
Moreover, we have the following. =%

Lemma 3.1. For any H, r > 0 and any small € > 0, we have

b . Vi
(a) Z b'l_i <<1+H5/2+3/4—)+6, (b) Z _;(; « H1/2+8,
m=H My w=H My
© % -2 <l H @ ¥ b cme |
Pt d A ’ wm S ’

where the implied constants depend at most on &.

Proof. This is proved by using (3.1) in conjunction with partial summation and
Cauchy-Schwarz’s inequality.

By Lemma 2.1 and Lemma 2.2 with py = 0, we have for 0 < p = 1 (p > 0 is required
in Lemma 2.1),

% bn
(3.2) E,(y) = eo p)yepngl W cos(hy/Iey + ko(p)7)
6,~1/2 %" by
+ei(p)y” ZlW cos(hy/Iy + ki(p)n)
n=1[Un
+0(y¥™)

where the implied constant is independent of p. This point is important as we shall later
consider p — 0+. According to Lemma 2.1, the first sum in (3.2) converges uniformly on
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any finite closed interval in (0, 00), while by Lemma 3.1 (a), the second sum converges
absolutely for any fixed p > 0. From the definition (2.1), we see that the function .

exists and E(y) = Ep(y) for all y = A,. We can now state our main result.
Theorem 1.  Suppose that the conditions in (%) hold and that for some constant D > 0,

| - |bbab]
(3.3) S bt
n,m,l=1 (ﬂ;;;ﬂ,,[l[)5/2+1/4
|/ Bt/ = /B < 4P

« 1.

Then for any sufficiently large L < /X, we have

sup  +Eo(v) » X% logt2 L,
ve[X, X+LVX]

(Here sup + Ey(v) denotes both sup Ey(v) and sup(—Ey(v)).)
An application of our result to 3-dimensional ellipsoids will be given in the last section.
To prove Theorem 1, we need one more lemma.

Lemma 3.2. Let h be a real-valued integrable function defined on an interval I. If

(13 ge(|1]—1 Ifhzj/z

1

oo (59" (rpe)”

Proof. Thisis[17], Lemma 1.

™

for some 6 < 1, then

4. Proof of Theorem 1

Following the method in [17], we shall derive our Q. result by computing the second
and third power moments of a convolution. The reason for taking convolution is to trun-
cate the infinite series expansion (first sum on the right hand side of (3.2)) into a manage-
able finite sum. - '

Let L be sufficiently large and L < +/X. We shall use the kernel

K(u)=B <%>z

where B = [L*@+2D)"|L-1 and D is as in (3.3). Note that B =< L#+?D)” and BL is an inte-
ger so that K(L) = 0. This helps to simplify our argument.
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Since we do not have a series expansion for Eo(v) in hand (note that the validity of
(3.2) does not include the case p = 0) so instead of treating Eo(v) directly, we first consider

() = f Ep((t + u)z)

Ku)du, forO<p=1landt=2L.
L (¢ +u)* % 4

After evaluating the second and third power moments of F,(¢) by means of (3.2), we then
let p — 0+ to deduce our result. So in the estimations below, we have to keep all 1mphed
constants in the « and O-symbols independent of p.

First of all, we find that

J)
2nB

<o .
| K(u)e™ du = max (0,1 —

—Q0

)

K(u) « min(B~'u"%, B), K' () « min(B*[u|,u2) and K" (u) « Bu~>. Hence by partial inte-
gration,

L A o0 .

[ Kwedu=| [ — [ |K(ue" du

-L —  |ul>L
_ | sin(yL) C12
= max(O,l ‘ZEBD +2K(L) ) + O(BL™'y™*)
—max(0,1—|-2|) + 0BLy?)

’ 2nB ’
since K(L) = 0. Furthermore for |f| = 2L, by partial integration,

L .
[+ u) " K (u)e™ du « Bty
-L

L
Using also the estimate | K(u)du « 1 and those in Lemma 3.1, we deduce from (3.2)
that - :

(4.1) F,(f) = X,(f) + O(BL™)
where

bn
(4.2) () =elp) X 3w cos(hy/Iyt + ko(p)7)
1, <(2nB/h)* Hn

and w, = 1 — h\/it,/(2nB).
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By squaring out and then integrating term by term, we get

T ,
L ; T, ()" dt
b.b
2 m<¥n
= ep(p) 2. _—
'u"”‘u"é(an/h)2 ('umlun)ﬁ/2+l/4+p/2
T+L
{COS(/z Vil — f) 1) + cos (A(y/f + /)t + 2ko(p)m) } dt
_ eo(/’)2 b—'21 w2
— LA

1, < (2nB/h)* /‘n

|bmbn I -1
oA |V/Hn =/l

‘o (L‘
Hyy 1y = (27[B/h)2 (um'u"

e |bmbn[ — =1
o <L Hons iy < (27B/ B)? (ﬂt71ﬂ11)5/2+1/4+p/2 ( s T \/#—n) .

Here we have used the simple bound

T+L
(4.3) [ cos(ut + =) dt « min(L, [u| ™).
. T

The first O-term above is

& L >+ >, :
P St 2By [2<pty <pt, < B?

Clearly, by Lemma 3.1 (a),
> < b |bn|/¢;(5/2+1/4) Ibnz]ﬂ;,(‘s/ZHM) « BI*®,
P Spn /2B o, < B \ iy Sy

and

|bm blll V /"m

Hn /2<tun <t < BZ (lulﬂlun ) 5/2—'—1 /4 ('um o 'un)

b2 !
m -
<« Z 5 Z (Aum - /u)z) + Z E (lum - tun)
My <B 2 'u’ n luln/ 2<Aun <t 2RSS B? ﬂ 7 My <y <24t

= Z m log,um (as l:um - .unll » 1 forn =+ m)
My < B?

&« B1+8,
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by Lemma 3.1 (b). The second O-term is easier and is treated by similar argument. Their
overall contribution is «B'*¢L~!. Thus,

- o 60(/7 ? b;% ey —
@44) L7 [ Z(0)’di= 2) > i Vet OBTLT.
T 1y < (2nB/h)* Hn

Since w, « 1, by Lemma 3.1 (c),

, T+L
(4.5) L7 [ 3,(1)* dt < log*™ "' B.
T

Thus, in view of (4.4) and (4.1), we have

T3 eo(p)’ by -
(4.6) LIYIFp(t)Zdt: (.2) > T+1/2—+pw,21+0(B1+L1).

1, S (2nB/h)* Hn

‘We come now to show that

T+L 3
L' [ F()dt < 1.
- P

From (4.1), by applying Cauchy-Schwarz’s inequality and using the bound (4.5), we find

that
T+L 4 T+L ;
(4.7) L' [ F@Pat=L"" [ 2,(0°di+ OB*L™).
T T
Multiply out the finite series for Z,(7) given in (4.2) and then integrate term by term,
we find that

T4+L 3
L 2[ 3,(2)° di

3 -1
— eo(p) Z . H mL ‘[ . H COS(h1 /ﬂjf‘i‘ ko(p)?’[) dt.
[l,,,,,ll,,,‘ll[§(27IB/h) ]=171,ll,] /’t] T ]=~‘771,11,1

Since
cos A cos Bcos C

(cos(4 + B+ C) +cos(4 + B — C) +cos(4 — B+ C) +cos(4 — B — C)),

ENT

it follows, after using (4.3) and renaming m, n, /, that
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T lbmb;zbll

Lt @d<lt ¥ 5 /vi7a WL, [/, + vy — VAT
T Hos s By «B? (:um/lmul)
—l—L_‘I z |bmbnbl|

-1
)5/2+1/4 (V/um + m+ \//jl;)

Hops P By < B2 (lulnlulltul

:TI+T2)

say. By Lemma 3.1 (a), we have T, « L' B**%, To evaluate T}, we use our additional as-
sumption (3.3) stated in Theorem 1. We split the sum in 77 into two parts according as
|/ + /B — /H| < 172 or > 7P By (3.3), the first part is «1. Applying Lemma 3.1 (a)
again, the second part is « L' B3>t2D+¢ Hence, T} « L~'B3*?P+¢ « 1, since B =< L1/(4+2D),
Putting this into (4.7), we get

T+L
(4.8) LV [ F@) d«1.
T

Since, from (2.1), E,(x) remains bounded for 0 < p < 1 and x lying in any finite in-
terval, we can pass the limit p — 04 inside the integrand sign to obtain

' 2

(4.9) plni'r&r F,,(t) = jL pl_i)l’(l)l_’_%lz (u) du
_ EE(Hw?) o
- MJ;‘ (t_l_ u)200 1<( )d 3

since lir(l)‘1+ E,(y) = Eo(y) except for y = A,.
p—

On the other hand, by (4.6), Lemma 3.1 (c) and the fact that B =< L#+2P)"' | we have

_ THL e0(0)2 b% B
L7 [ lim F)(r)dt= sei7s Wa + O(BI°LT)
T’ 1, <(2nB/h)* Hn
e()(o)'2 bz _
> E ”—5.’_"1—/2 + O(B1+6L 1)
ty < (7B/h)* Hn
> log?+! L.
Note that w, > 1/2 for u, < (nB/h)*. Also, by (4.8),
T+L
L™ [ lim F,()*dr«1.
T P00+

Applying Lemma 3.2, we deduce that

sup (i lim F,,(t)) » log1/2 L,
te[r,T+L] \ PO+
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L
Finally, since [ K(u)du « 1, we find from (4.9) that
. ;

n Ey ((f + ll)z)

Xz » log"H2 L,

sup sup -+
te[T, T+L) ue[-L,L) (t+u

Choosing T = VX + L, our Theorem 1 follows.

5. Lattice points in ellipsoids

Let O be a 3 x 3 positive definite symmetric integral matrix with even diagonal
1 ; . . .
elements, g(x) = QxTQx be the associated quadratic form in 3 variables and denote the

Epstein zeta-function of Q by

L) =N - s (Res>3/2),

S
5 xeZ?—{0}

where #(Q,n) counts the number of integral solutions of q(x) = n. Suppose that Q is primi-
tive (i.e. Q= (a5) with g.c.d.((a,-i/2,a,-j)léi#jém) =1). Then, {y(s) can be meromorphi-
cally continued to the whole complex plane with a simple pole at s =3/2 of residue
res;—3/2 (o(s) = |det o™’ 1r (3 /2)_1(27z)3/ 2 which gives rise to the main term in the sum-
matory formula of #(Q,n). Besides, the following functional equation is satisfied by Lo(s):

(20)T () ofs) = Idet 0 (%‘.—)s_mr @ - s) Lo G -s)

where ¢ is the smallest positive integer such that gQ~! is an integral matrix with even diag-
onal elements, called the level of Q. Hence, in the notation of Section 2, g=32 a=1,

0o = 1/2, §(s) = (21) "L o(s) and Y(s) = |det /2 (%Z)*sgqg_l (5). Define

32

ot 3/2
(5.1) Py(x) = ; r(Q,n) — |det Q|71 (Fz( 5) 7

Landau proved that
(5.2) Pp(x) « x4

(reproved in Miiller [13], p. 150, as well). Now direct application of our Theorem 1 yields
the following result in the opposite direction.

Theorem 2. Pp(x) = Q4 (x!/2,/logx).

Remark. This improves the Q. -results of the 3-dimensional ellipsoids discussed in

[1].
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To prove it, we first quote Theorem 6.1 of Miiller [13] which gives

> r(Q, n)2 = Bsz + 0(x14/9),

n<x

for some positive constant By. (So x = 01in (3.1).) From (5.1) and (5.2),
> rQ,nn!/ 7" « X172 7 r(Q,n)
x2<n<(X+1) X2<ns(X+1)
< X'72(X + [Po(XP)] + [Po((X + 1)) « X>77.
As ot = 3/2, we see that (2.2) is valid and thus condition () holds. To see the condition

(3.3), we note that [v/m -++/n— V1| is either equal to 0 or »173/2. As r(Q,n) « n'/**¢, we
see that

Z ’.(Qa m)r(Q,n)r(Q, [) « Z S~3/2+£(ab(a + b))—l+s & 1,
Jir it mnl ab

s squarefree

since m, n and [ satisfy v/m + /n = VI if and only if they are of the form m = a?s, n = b%s
and [ = (a+ b)zs where a, b, s are positive integers and s is squarefree. Theorem 2 is thus
proved.
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